楼宇智能通风网络中的风量重建和传感器优化分布

Q4 Engineering
Yandong Zhou
{"title":"楼宇智能通风网络中的风量重建和传感器优化分布","authors":"Yandong Zhou","doi":"10.1016/j.measen.2024.101252","DOIUrl":null,"url":null,"abstract":"<div><p>Ensuring the accuracy and reliability of ventilation parameter monitoring is pivotal for the development of intelligent ventilation systems. To attain a visual representation of airflow, solving the challenge of airflow reconstruction necessitates the strategic use of a limited number of sensors. In addressing these concerns, this article introduces an optimization approach for ventilation airflow leveraging the Breadth-First Search (BFS) algorithm. Additionally, it proposes an optimization distribution method for mine ventilation sensors, grounded in the Independent Cut Set algorithm. Research has found that compared to the traditional PSO algorithm, the BFS algorithm produces a higher optimal air volume solution when optimizing the air volume; Comparatively, the proposed algorithm exhibits significantly shorter average running times than the Particle Swarm Optimization (PSO) algorithm. It boasts the highest average convergence rate, ensuring superior accuracy, and possesses a notable capability to escape local minima, facilitating the acquisition of optimal solutions. Leveraging the independent cut set algorithm optimizes the calculation process through matrix operations. Exploiting the properties of matrices allows for a more rapid and intuitive resolution of sensor localization problems.</p></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"34 ","pages":"Article 101252"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665917424002289/pdfft?md5=191856beb1d7424b4e4b6af0150e0178&pid=1-s2.0-S2665917424002289-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Air volume reconstruction and sensor optimization distribution in building intelligent ventilation network\",\"authors\":\"Yandong Zhou\",\"doi\":\"10.1016/j.measen.2024.101252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ensuring the accuracy and reliability of ventilation parameter monitoring is pivotal for the development of intelligent ventilation systems. To attain a visual representation of airflow, solving the challenge of airflow reconstruction necessitates the strategic use of a limited number of sensors. In addressing these concerns, this article introduces an optimization approach for ventilation airflow leveraging the Breadth-First Search (BFS) algorithm. Additionally, it proposes an optimization distribution method for mine ventilation sensors, grounded in the Independent Cut Set algorithm. Research has found that compared to the traditional PSO algorithm, the BFS algorithm produces a higher optimal air volume solution when optimizing the air volume; Comparatively, the proposed algorithm exhibits significantly shorter average running times than the Particle Swarm Optimization (PSO) algorithm. It boasts the highest average convergence rate, ensuring superior accuracy, and possesses a notable capability to escape local minima, facilitating the acquisition of optimal solutions. Leveraging the independent cut set algorithm optimizes the calculation process through matrix operations. Exploiting the properties of matrices allows for a more rapid and intuitive resolution of sensor localization problems.</p></div>\",\"PeriodicalId\":34311,\"journal\":{\"name\":\"Measurement Sensors\",\"volume\":\"34 \",\"pages\":\"Article 101252\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665917424002289/pdfft?md5=191856beb1d7424b4e4b6af0150e0178&pid=1-s2.0-S2665917424002289-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665917424002289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665917424002289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

确保通风参数监测的准确性和可靠性是开发智能通风系统的关键。要实现气流的可视化显示,解决气流重建的难题就必须战略性地使用数量有限的传感器。为了解决这些问题,本文介绍了一种利用广度优先搜索(BFS)算法的通风气流优化方法。此外,文章还提出了一种基于独立切集算法的矿井通风传感器优化分配方法。研究发现,与传统的 PSO 算法相比,BFS 算法在优化风量时能产生更高的最优风量解;与粒子群优化(PSO)算法相比,该算法的平均运行时间明显更短。它拥有最高的平均收敛率,确保了卓越的精度,并具有显著的摆脱局部极小值的能力,有助于获得最优解。利用独立切集算法,通过矩阵运算优化了计算过程。利用矩阵的特性,可以更快速、更直观地解决传感器定位问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Air volume reconstruction and sensor optimization distribution in building intelligent ventilation network

Ensuring the accuracy and reliability of ventilation parameter monitoring is pivotal for the development of intelligent ventilation systems. To attain a visual representation of airflow, solving the challenge of airflow reconstruction necessitates the strategic use of a limited number of sensors. In addressing these concerns, this article introduces an optimization approach for ventilation airflow leveraging the Breadth-First Search (BFS) algorithm. Additionally, it proposes an optimization distribution method for mine ventilation sensors, grounded in the Independent Cut Set algorithm. Research has found that compared to the traditional PSO algorithm, the BFS algorithm produces a higher optimal air volume solution when optimizing the air volume; Comparatively, the proposed algorithm exhibits significantly shorter average running times than the Particle Swarm Optimization (PSO) algorithm. It boasts the highest average convergence rate, ensuring superior accuracy, and possesses a notable capability to escape local minima, facilitating the acquisition of optimal solutions. Leveraging the independent cut set algorithm optimizes the calculation process through matrix operations. Exploiting the properties of matrices allows for a more rapid and intuitive resolution of sensor localization problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement Sensors
Measurement Sensors Engineering-Industrial and Manufacturing Engineering
CiteScore
3.10
自引率
0.00%
发文量
184
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信