潮间带湿地病毒生物多样性和功能潜力的时间更替。

IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Mengzhi Ji, Yan Li, Jiayin Zhou, Wen Song, Yuqi Zhou, Kai Ma, Mengqi Wang, Xia Liu, Yueyue Li, Xiaofan Gong, Qichao Tu
{"title":"潮间带湿地病毒生物多样性和功能潜力的时间更替。","authors":"Mengzhi Ji, Yan Li, Jiayin Zhou, Wen Song, Yuqi Zhou, Kai Ma, Mengqi Wang, Xia Liu, Yueyue Li, Xiaofan Gong, Qichao Tu","doi":"10.1038/s41522-024-00522-8","DOIUrl":null,"url":null,"abstract":"<p><p>As the central members of the microbiome networks, viruses regulate the composition of microbial communities and drive the nutrient cycles of ecosystems by lysing host cells. Therefore, uncovering the dynamic patterns and the underlying ecological mechanisms mediating the tiniest viral communities across space and through time in natural ecosystems is of crucial importance for better understanding the complex microbial world. Here, the temporal dynamics of intertidal viral communities were investigated via a time-series sampling effort. A total of 1911 viral operational taxonomic units were recovered from 36 bimonthly collected shotgun metagenomes. Functionally important auxiliary metabolic genes involved in carbohydrate, sulfur, and phosphorus metabolism were detected, some of which (e.g., cysH gene) were stably present within viral genomes over time. Over the sampling period, strong and comparable temporal turnovers were observed for intertidal viromes and their host microbes. Winter was determined as the pivotal point for the shifts in viral diversity patterns. Notably, the viral micro-diversity covaried with the macro-diversity, following similar temporal patterns. The relative abundances of viral taxa also covaried with their host prokaryotes. Meanwhile, the virus-host relationships at the whole community level were relatively stable. Further statistical analyses demonstrated that the dynamic patterns of viral communities were highly deterministic, for which temperature was the major driver. This study provided valuable mechanistic insights into the temporal turnover of viral communities in complex ecosystems such as intertidal wetlands.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"48"},"PeriodicalIF":7.8000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186824/pdf/","citationCount":"0","resultStr":"{\"title\":\"Temporal turnover of viral biodiversity and functional potential in intertidal wetlands.\",\"authors\":\"Mengzhi Ji, Yan Li, Jiayin Zhou, Wen Song, Yuqi Zhou, Kai Ma, Mengqi Wang, Xia Liu, Yueyue Li, Xiaofan Gong, Qichao Tu\",\"doi\":\"10.1038/s41522-024-00522-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the central members of the microbiome networks, viruses regulate the composition of microbial communities and drive the nutrient cycles of ecosystems by lysing host cells. Therefore, uncovering the dynamic patterns and the underlying ecological mechanisms mediating the tiniest viral communities across space and through time in natural ecosystems is of crucial importance for better understanding the complex microbial world. Here, the temporal dynamics of intertidal viral communities were investigated via a time-series sampling effort. A total of 1911 viral operational taxonomic units were recovered from 36 bimonthly collected shotgun metagenomes. Functionally important auxiliary metabolic genes involved in carbohydrate, sulfur, and phosphorus metabolism were detected, some of which (e.g., cysH gene) were stably present within viral genomes over time. Over the sampling period, strong and comparable temporal turnovers were observed for intertidal viromes and their host microbes. Winter was determined as the pivotal point for the shifts in viral diversity patterns. Notably, the viral micro-diversity covaried with the macro-diversity, following similar temporal patterns. The relative abundances of viral taxa also covaried with their host prokaryotes. Meanwhile, the virus-host relationships at the whole community level were relatively stable. Further statistical analyses demonstrated that the dynamic patterns of viral communities were highly deterministic, for which temperature was the major driver. This study provided valuable mechanistic insights into the temporal turnover of viral communities in complex ecosystems such as intertidal wetlands.</p>\",\"PeriodicalId\":19370,\"journal\":{\"name\":\"npj Biofilms and Microbiomes\",\"volume\":\"10 1\",\"pages\":\"48\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186824/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biofilms and Microbiomes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41522-024-00522-8\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-024-00522-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

作为微生物组网络的核心成员,病毒通过裂解宿主细胞来调节微生物群落的组成并推动生态系统的营养循环。因此,揭示自然生态系统中最微小病毒群落跨空间和跨时间的动态模式及其潜在的生态机制,对于更好地理解复杂的微生物世界至关重要。在此,我们通过时间序列采样工作研究了潮间带病毒群落的时间动态。从 36 个双月采集的射枪元基因组中,共回收了 1911 个病毒操作分类单元。检测到了参与碳水化合物、硫和磷代谢的重要功能性辅助代谢基因,其中一些(如 cysH 基因)随着时间的推移稳定地存在于病毒基因组中。在采样期间,潮间带病毒体及其宿主微生物发生了强烈的、可比较的时间转换。冬季被确定为病毒多样性模式转变的关键时刻。值得注意的是,病毒的微观多样性与宏观多样性一致,具有相似的时间模式。病毒类群的相对丰度也与其宿主原核生物相关。同时,整个群落水平上的病毒-宿主关系相对稳定。进一步的统计分析表明,病毒群落的动态模式具有高度决定性,而温度是其主要驱动因素。这项研究为潮间带湿地等复杂生态系统中病毒群落的时间更替提供了宝贵的机理启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Temporal turnover of viral biodiversity and functional potential in intertidal wetlands.

Temporal turnover of viral biodiversity and functional potential in intertidal wetlands.

As the central members of the microbiome networks, viruses regulate the composition of microbial communities and drive the nutrient cycles of ecosystems by lysing host cells. Therefore, uncovering the dynamic patterns and the underlying ecological mechanisms mediating the tiniest viral communities across space and through time in natural ecosystems is of crucial importance for better understanding the complex microbial world. Here, the temporal dynamics of intertidal viral communities were investigated via a time-series sampling effort. A total of 1911 viral operational taxonomic units were recovered from 36 bimonthly collected shotgun metagenomes. Functionally important auxiliary metabolic genes involved in carbohydrate, sulfur, and phosphorus metabolism were detected, some of which (e.g., cysH gene) were stably present within viral genomes over time. Over the sampling period, strong and comparable temporal turnovers were observed for intertidal viromes and their host microbes. Winter was determined as the pivotal point for the shifts in viral diversity patterns. Notably, the viral micro-diversity covaried with the macro-diversity, following similar temporal patterns. The relative abundances of viral taxa also covaried with their host prokaryotes. Meanwhile, the virus-host relationships at the whole community level were relatively stable. Further statistical analyses demonstrated that the dynamic patterns of viral communities were highly deterministic, for which temperature was the major driver. This study provided valuable mechanistic insights into the temporal turnover of viral communities in complex ecosystems such as intertidal wetlands.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Biofilms and Microbiomes
npj Biofilms and Microbiomes Immunology and Microbiology-Microbiology
CiteScore
12.10
自引率
3.30%
发文量
91
审稿时长
9 weeks
期刊介绍: npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信