共 60 伽玛射线辐照对 SiGe HBT 直流和射频特性的影响

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Guofang Yu, Jie Cui, Yue Zhao, Wenpu Cui, Jun Fu
{"title":"共 60 伽玛射线辐照对 SiGe HBT 直流和射频特性的影响","authors":"Guofang Yu,&nbsp;Jie Cui,&nbsp;Yue Zhao,&nbsp;Wenpu Cui,&nbsp;Jun Fu","doi":"10.1016/j.microrel.2024.115443","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the effects of Co-60 gamma-ray irradiation on the DC and RF characteristics of the SiGe HBTs, with a total dose of up to 4000 krad(Si). The degradation of the forward base current is primarily attributed to surface recombination due to the induced interface traps. The ideality factor of the forward excess base current is affected by the positive oxide-trapped charges at the interface of the emitter-base spacer oxide. TCAD simulation results indicate that the effective integral region of the surface recombination rate is associated with the positive oxide-trapped charge density. The accumulation of positive oxide-trapped charges in the shallow trench isolation oxide has an impact on the potentials of the interface and epi-collector region, subsequently affecting the base diffusion current. Therefore, the ideality factor of the reverse excess base current depends on the device geometry. The RF characterization suggests that the depletion capacitance of the base-emitter junction is more susceptible to gamma-ray irradiation compared to the base-collector junction. And the cut-off frequency experiences a slight degradation as the total dose increases.</p></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"159 ","pages":"Article 115443"},"PeriodicalIF":1.6000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of co-60 gamma-ray irradiation on the DC and RF characteristics of SiGe HBTs\",\"authors\":\"Guofang Yu,&nbsp;Jie Cui,&nbsp;Yue Zhao,&nbsp;Wenpu Cui,&nbsp;Jun Fu\",\"doi\":\"10.1016/j.microrel.2024.115443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the effects of Co-60 gamma-ray irradiation on the DC and RF characteristics of the SiGe HBTs, with a total dose of up to 4000 krad(Si). The degradation of the forward base current is primarily attributed to surface recombination due to the induced interface traps. The ideality factor of the forward excess base current is affected by the positive oxide-trapped charges at the interface of the emitter-base spacer oxide. TCAD simulation results indicate that the effective integral region of the surface recombination rate is associated with the positive oxide-trapped charge density. The accumulation of positive oxide-trapped charges in the shallow trench isolation oxide has an impact on the potentials of the interface and epi-collector region, subsequently affecting the base diffusion current. Therefore, the ideality factor of the reverse excess base current depends on the device geometry. The RF characterization suggests that the depletion capacitance of the base-emitter junction is more susceptible to gamma-ray irradiation compared to the base-collector junction. And the cut-off frequency experiences a slight degradation as the total dose increases.</p></div>\",\"PeriodicalId\":51131,\"journal\":{\"name\":\"Microelectronics Reliability\",\"volume\":\"159 \",\"pages\":\"Article 115443\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0026271424001239\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271424001239","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了 Co-60 伽马射线辐照对硅锗 HBT 直流和射频特性的影响,总剂量高达 4000 krad(Si)。正向基极电流的衰减主要归因于诱导界面陷阱导致的表面重组。正向过剩基极电流的理想因子受到发射极-基极间隔氧化物界面的正氧化物陷阱电荷的影响。TCAD 模拟结果表明,表面重组率的有效积分区与正氧化物捕获电荷密度有关。浅沟槽隔离氧化物中积累的正氧化物捕获电荷会影响界面和外延集电区的电位,进而影响基极扩散电流。因此,反向过剩基极电流的理想系数取决于器件的几何形状。射频特性分析表明,与基极-集电极结相比,基极-发射极结的耗尽电容更容易受到伽马射线辐照的影响。随着总剂量的增加,截止频率也会出现轻微下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of co-60 gamma-ray irradiation on the DC and RF characteristics of SiGe HBTs

This study investigates the effects of Co-60 gamma-ray irradiation on the DC and RF characteristics of the SiGe HBTs, with a total dose of up to 4000 krad(Si). The degradation of the forward base current is primarily attributed to surface recombination due to the induced interface traps. The ideality factor of the forward excess base current is affected by the positive oxide-trapped charges at the interface of the emitter-base spacer oxide. TCAD simulation results indicate that the effective integral region of the surface recombination rate is associated with the positive oxide-trapped charge density. The accumulation of positive oxide-trapped charges in the shallow trench isolation oxide has an impact on the potentials of the interface and epi-collector region, subsequently affecting the base diffusion current. Therefore, the ideality factor of the reverse excess base current depends on the device geometry. The RF characterization suggests that the depletion capacitance of the base-emitter junction is more susceptible to gamma-ray irradiation compared to the base-collector junction. And the cut-off frequency experiences a slight degradation as the total dose increases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronics Reliability
Microelectronics Reliability 工程技术-工程:电子与电气
CiteScore
3.30
自引率
12.50%
发文量
342
审稿时长
68 days
期刊介绍: Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged. Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信