奥沙西泮在超临界二氧化碳中的溶解度:实验和建模

IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL
Adrián Rojas , Seyed Ali Sajadian , Fariba Razmimanesh , Gonzalo Aguila , Nadia Esfandiari , Abolghasem Jouyban
{"title":"奥沙西泮在超临界二氧化碳中的溶解度:实验和建模","authors":"Adrián Rojas ,&nbsp;Seyed Ali Sajadian ,&nbsp;Fariba Razmimanesh ,&nbsp;Gonzalo Aguila ,&nbsp;Nadia Esfandiari ,&nbsp;Abolghasem Jouyban","doi":"10.1016/j.fluid.2024.114165","DOIUrl":null,"url":null,"abstract":"<div><p>This study thoroughly investigates the solubility of oxazepam in supercritical carbon dioxide (SC-CO<sub>2</sub>) at temperatures of 308, 318, 328, and 338 K and pressures ranging from 12 to 30 MPa. The solubility measurements revealed a mole fraction of oxazepam ranging from 2.50 × 10<sup>−6</sup> to 7.13 × 10<sup>−5</sup>, with the highest solubility observed at 338 K and 30 MPa. The solubility data were effectively modeled using semi-empirical density-based models (Mendez-Santiago and Teja (MST), Chrastil, Bartle et al., Kumar and Johnston (K-J), and Alwi-Garlapati), two equations of state (Peng-Robinson and modified-Pazuki) and regular solution models. The K-J model emerged as the best fit for the experimental data, boasting the lowest Average Absolute Relative Deviation (AARD) value of 7.73 %. The Peng-Robinson equation of state outperformed the modified-Pazuki equation, with AARD values of 15.71 % and 18.15 %, respectively. The study's key finding is the low solubility of oxazepam in SC-CO<sub>2</sub>, which suggests that supercritical antisolvent techniques could be effectively employed for synthesizing nanoparticles of this pharmaceutical compound. These findings have practical implications as they provide valuable insights for optimizing drug formulation processes and demonstrate the potential of SC-CO<sub>2</sub> in pharmaceutical applications.</p></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"585 ","pages":"Article 114165"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solubility of oxazepam in supercritical carbon dioxide: Experimental and modeling\",\"authors\":\"Adrián Rojas ,&nbsp;Seyed Ali Sajadian ,&nbsp;Fariba Razmimanesh ,&nbsp;Gonzalo Aguila ,&nbsp;Nadia Esfandiari ,&nbsp;Abolghasem Jouyban\",\"doi\":\"10.1016/j.fluid.2024.114165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study thoroughly investigates the solubility of oxazepam in supercritical carbon dioxide (SC-CO<sub>2</sub>) at temperatures of 308, 318, 328, and 338 K and pressures ranging from 12 to 30 MPa. The solubility measurements revealed a mole fraction of oxazepam ranging from 2.50 × 10<sup>−6</sup> to 7.13 × 10<sup>−5</sup>, with the highest solubility observed at 338 K and 30 MPa. The solubility data were effectively modeled using semi-empirical density-based models (Mendez-Santiago and Teja (MST), Chrastil, Bartle et al., Kumar and Johnston (K-J), and Alwi-Garlapati), two equations of state (Peng-Robinson and modified-Pazuki) and regular solution models. The K-J model emerged as the best fit for the experimental data, boasting the lowest Average Absolute Relative Deviation (AARD) value of 7.73 %. The Peng-Robinson equation of state outperformed the modified-Pazuki equation, with AARD values of 15.71 % and 18.15 %, respectively. The study's key finding is the low solubility of oxazepam in SC-CO<sub>2</sub>, which suggests that supercritical antisolvent techniques could be effectively employed for synthesizing nanoparticles of this pharmaceutical compound. These findings have practical implications as they provide valuable insights for optimizing drug formulation processes and demonstrate the potential of SC-CO<sub>2</sub> in pharmaceutical applications.</p></div>\",\"PeriodicalId\":12170,\"journal\":{\"name\":\"Fluid Phase Equilibria\",\"volume\":\"585 \",\"pages\":\"Article 114165\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Phase Equilibria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378381224001419\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224001419","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究深入探讨了奥沙西泮在超临界二氧化碳(SC-CO2)中的溶解度,温度为 308、318、328 和 338 K,压力为 12 至 30 MPa。溶解度测量结果显示,奥沙西泮的摩尔分数在 2.50 × 10-6 到 7.13 × 10-5 之间,在 338 K 和 30 MPa 时溶解度最高。使用基于密度的半经验模型(Mendez-Santiago 和 Teja(MST)、Chrastil、Bartle 等人、Kumar 和 Johnston(K-J)以及 Alwi-Garlapati)、两个状态方程(Peng-Robinson 和修改后的 Pazuki)以及常规溶液模型对溶解度数据进行了有效建模。K-J 模型最适合实验数据,平均绝对相对偏差 (AARD) 值最低,为 7.73%。彭-罗宾逊状态方程的 AARD 值分别为 15.71 % 和 18.15 %,优于修正的帕祖基方程。该研究的主要发现是奥沙西泮在 SC-CO2 中的溶解度较低,这表明超临界反溶剂技术可有效用于合成这种药物化合物的纳米颗粒。这些发现具有实际意义,因为它们为优化药物制剂工艺提供了宝贵的见解,并证明了 SC-CO2 在制药应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Solubility of oxazepam in supercritical carbon dioxide: Experimental and modeling

Solubility of oxazepam in supercritical carbon dioxide: Experimental and modeling

This study thoroughly investigates the solubility of oxazepam in supercritical carbon dioxide (SC-CO2) at temperatures of 308, 318, 328, and 338 K and pressures ranging from 12 to 30 MPa. The solubility measurements revealed a mole fraction of oxazepam ranging from 2.50 × 10−6 to 7.13 × 10−5, with the highest solubility observed at 338 K and 30 MPa. The solubility data were effectively modeled using semi-empirical density-based models (Mendez-Santiago and Teja (MST), Chrastil, Bartle et al., Kumar and Johnston (K-J), and Alwi-Garlapati), two equations of state (Peng-Robinson and modified-Pazuki) and regular solution models. The K-J model emerged as the best fit for the experimental data, boasting the lowest Average Absolute Relative Deviation (AARD) value of 7.73 %. The Peng-Robinson equation of state outperformed the modified-Pazuki equation, with AARD values of 15.71 % and 18.15 %, respectively. The study's key finding is the low solubility of oxazepam in SC-CO2, which suggests that supercritical antisolvent techniques could be effectively employed for synthesizing nanoparticles of this pharmaceutical compound. These findings have practical implications as they provide valuable insights for optimizing drug formulation processes and demonstrate the potential of SC-CO2 in pharmaceutical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Phase Equilibria
Fluid Phase Equilibria 工程技术-工程:化工
CiteScore
5.30
自引率
15.40%
发文量
223
审稿时长
53 days
期刊介绍: Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results. Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信