深度 SHAP 方法揭示的太阳风参数对地球同步轨道高能电子通量的影响

Space Weather Pub Date : 2024-06-01 DOI:10.1029/2024sw003880
Jianhang Wang, Z. Xiang, Binbin Ni, Deyu Guo, Yangxizi Liu, Junhu Dong, Jingle Hu, Haozhi Guo
{"title":"深度 SHAP 方法揭示的太阳风参数对地球同步轨道高能电子通量的影响","authors":"Jianhang Wang, Z. Xiang, Binbin Ni, Deyu Guo, Yangxizi Liu, Junhu Dong, Jingle Hu, Haozhi Guo","doi":"10.1029/2024sw003880","DOIUrl":null,"url":null,"abstract":"Solar wind is an intermediary in energy transfer from the Sun into the Earth's magnetosphere, and is considered as a decisive driver of energetic electron dynamics at the geosynchronous orbit (GEO). Based on machine learning technology, several models driven by solar wind parameters have been established to predict GEO electron fluxes. However, the relative contributions of different solar wind parameters on GEO electron fluxes are still unclear. Recently, a feature attribution method, Deep SHapley Additive exPlanations (Deep SHAP) is proposed to open black boxes of machine learning models. In this study, we use the Deep SHAP method to quantify contributions of different solar wind parameters with an artificial neural network (ANN) model. Backpropagating the prediction results of this ANN model from 2011 to 2020, SHAP values for four solar wind parameters (interplanetary magnetic field (IMF) BZ, solar wind speed, solar wind dynamic pressure, and proton density) are calculated and comprehensively analyzed. The results suggest that solar wind speed with a lag of 1 day is the most important driver. We further investigate relative roles of different parameters in three specific electron fluxes variation events (corresponding to electron fluxes reaching a local maximum, a local minimum, and unchanged, respectively). The results suggest that high solar wind speed and southward IMF BZ (high dynamic pressures) facilitate increases (decreases) of electron fluxes. These findings help reveal the underlying physical mechanisms of GEO electron dynamics and help develop more accurate prediction models for GEO electron fluxes.","PeriodicalId":510519,"journal":{"name":"Space Weather","volume":"25 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influences of Solar Wind Parameters on Energetic Electron Fluxes at Geosynchronous Orbit Revealed by the Deep SHAP Method\",\"authors\":\"Jianhang Wang, Z. Xiang, Binbin Ni, Deyu Guo, Yangxizi Liu, Junhu Dong, Jingle Hu, Haozhi Guo\",\"doi\":\"10.1029/2024sw003880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar wind is an intermediary in energy transfer from the Sun into the Earth's magnetosphere, and is considered as a decisive driver of energetic electron dynamics at the geosynchronous orbit (GEO). Based on machine learning technology, several models driven by solar wind parameters have been established to predict GEO electron fluxes. However, the relative contributions of different solar wind parameters on GEO electron fluxes are still unclear. Recently, a feature attribution method, Deep SHapley Additive exPlanations (Deep SHAP) is proposed to open black boxes of machine learning models. In this study, we use the Deep SHAP method to quantify contributions of different solar wind parameters with an artificial neural network (ANN) model. Backpropagating the prediction results of this ANN model from 2011 to 2020, SHAP values for four solar wind parameters (interplanetary magnetic field (IMF) BZ, solar wind speed, solar wind dynamic pressure, and proton density) are calculated and comprehensively analyzed. The results suggest that solar wind speed with a lag of 1 day is the most important driver. We further investigate relative roles of different parameters in three specific electron fluxes variation events (corresponding to electron fluxes reaching a local maximum, a local minimum, and unchanged, respectively). The results suggest that high solar wind speed and southward IMF BZ (high dynamic pressures) facilitate increases (decreases) of electron fluxes. These findings help reveal the underlying physical mechanisms of GEO electron dynamics and help develop more accurate prediction models for GEO electron fluxes.\",\"PeriodicalId\":510519,\"journal\":{\"name\":\"Space Weather\",\"volume\":\"25 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Weather\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1029/2024sw003880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2024sw003880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

太阳风是从太阳向地球磁层传递能量的中间环节,被认为是地球同步轨道(GEO)高能电子动态的决定性驱动因素。基于机器学习技术,已经建立了几个由太阳风参数驱动的模型来预测地球同步轨道的电子通量。然而,不同太阳风参数对地球同步轨道电子通量的相对贡献仍不清楚。最近,有人提出了一种特征归因方法--Deep SHapley Additive exPlanations(Deep SHAP)来打开机器学习模型的黑箱。在本研究中,我们使用 Deep SHAP 方法,通过人工神经网络(ANN)模型量化不同太阳风参数的贡献。将该人工神经网络模型从2011年到2020年的预测结果进行反向传播,计算并综合分析了四个太阳风参数(行星际磁场(IMF)BZ、太阳风速度、太阳风动压和质子密度)的SHAP值。结果表明,滞后 1 天的太阳风速度是最重要的驱动因素。我们进一步研究了不同参数在三个特定电子通量变化事件(分别对应电子通量达到局部最大值、局部最小值和不变)中的相对作用。结果表明,高太阳风速和向南的IMF BZ(高动压)促进了电子通量的增加(减少)。这些发现有助于揭示地球同步轨道电子动力学的基本物理机制,并有助于建立更准确的地球同步轨道电子通量预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influences of Solar Wind Parameters on Energetic Electron Fluxes at Geosynchronous Orbit Revealed by the Deep SHAP Method
Solar wind is an intermediary in energy transfer from the Sun into the Earth's magnetosphere, and is considered as a decisive driver of energetic electron dynamics at the geosynchronous orbit (GEO). Based on machine learning technology, several models driven by solar wind parameters have been established to predict GEO electron fluxes. However, the relative contributions of different solar wind parameters on GEO electron fluxes are still unclear. Recently, a feature attribution method, Deep SHapley Additive exPlanations (Deep SHAP) is proposed to open black boxes of machine learning models. In this study, we use the Deep SHAP method to quantify contributions of different solar wind parameters with an artificial neural network (ANN) model. Backpropagating the prediction results of this ANN model from 2011 to 2020, SHAP values for four solar wind parameters (interplanetary magnetic field (IMF) BZ, solar wind speed, solar wind dynamic pressure, and proton density) are calculated and comprehensively analyzed. The results suggest that solar wind speed with a lag of 1 day is the most important driver. We further investigate relative roles of different parameters in three specific electron fluxes variation events (corresponding to electron fluxes reaching a local maximum, a local minimum, and unchanged, respectively). The results suggest that high solar wind speed and southward IMF BZ (high dynamic pressures) facilitate increases (decreases) of electron fluxes. These findings help reveal the underlying physical mechanisms of GEO electron dynamics and help develop more accurate prediction models for GEO electron fluxes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信