GLE 事件期间 NM 数据与航空高度辐射剂量之间的关系

Space Weather Pub Date : 2024-06-01 DOI:10.1029/2024sw003885
N. Larsen, A. Mishev
{"title":"GLE 事件期间 NM 数据与航空高度辐射剂量之间的关系","authors":"N. Larsen, A. Mishev","doi":"10.1029/2024sw003885","DOIUrl":null,"url":null,"abstract":"Ground‐level enhancements (GLEs) are sporadic events that signal the arrival of high fluxes of solar energetic particles (SEPs) that have been produced by solar eruptions. Ground‐level enhancement events are characterized by a significant increase in the count rate of ground‐based neutron monitors (NMs). The arrival of high‐energy SEPs in the atmosphere leads to an enhancement of the radiation environment, with the enhancement at aviation altitudes being particularly hazardous to human health as pilots, crew, and airline passengers can be subjected to dangerous levels of radiation during a GLE. Through the use of a currently expanding library of analyzed GLEs and the application of a newly developed atmospheric radiation model, both of which have been created in‐house, we found a strong statistically significant relationship between real‐time NM data during GLE events and the radiation doses at aviation altitudes. This result provides a strong scientific basis for the use of real‐time NM data as a proxy for radiation dose estimates during GLE events and aids in the development of future nowcasting models to help mitigate the dangerous impacts of future GLEs.","PeriodicalId":510519,"journal":{"name":"Space Weather","volume":"116 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relationship Between NM Data and Radiation Dose at Aviation Altitudes During GLE Events\",\"authors\":\"N. Larsen, A. Mishev\",\"doi\":\"10.1029/2024sw003885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ground‐level enhancements (GLEs) are sporadic events that signal the arrival of high fluxes of solar energetic particles (SEPs) that have been produced by solar eruptions. Ground‐level enhancement events are characterized by a significant increase in the count rate of ground‐based neutron monitors (NMs). The arrival of high‐energy SEPs in the atmosphere leads to an enhancement of the radiation environment, with the enhancement at aviation altitudes being particularly hazardous to human health as pilots, crew, and airline passengers can be subjected to dangerous levels of radiation during a GLE. Through the use of a currently expanding library of analyzed GLEs and the application of a newly developed atmospheric radiation model, both of which have been created in‐house, we found a strong statistically significant relationship between real‐time NM data during GLE events and the radiation doses at aviation altitudes. This result provides a strong scientific basis for the use of real‐time NM data as a proxy for radiation dose estimates during GLE events and aids in the development of future nowcasting models to help mitigate the dangerous impacts of future GLEs.\",\"PeriodicalId\":510519,\"journal\":{\"name\":\"Space Weather\",\"volume\":\"116 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Weather\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1029/2024sw003885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2024sw003885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地面增强(GLEs)是零星事件,是太阳爆发产生的高通量太阳高能粒子(SEPs)到达的信号。地基增强事件的特点是地基中子监测器(NMs)的计数率显著增加。高能 SEPs 进入大气层会导致辐射环境的增强,航空高度的增强对人类健康尤其有害,因为飞行员、机组人员和飞机乘客在地面增强事件期间会受到危险水平的辐射。通过使用目前不断扩大的 GLE 分析库和应用新开发的大气辐射模型(这两个模型都是内部创建的),我们发现 GLE 事件期间的实时 NM 数据与航空高度的辐射剂量之间存在着统计学上的显著关系。这一结果为使用实时 NM 数据作为 GLE 事件期间辐射剂量估算的替代数据提供了有力的科学依据,并有助于开发未来的预报模型,帮助减轻未来 GLE 的危险影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relationship Between NM Data and Radiation Dose at Aviation Altitudes During GLE Events
Ground‐level enhancements (GLEs) are sporadic events that signal the arrival of high fluxes of solar energetic particles (SEPs) that have been produced by solar eruptions. Ground‐level enhancement events are characterized by a significant increase in the count rate of ground‐based neutron monitors (NMs). The arrival of high‐energy SEPs in the atmosphere leads to an enhancement of the radiation environment, with the enhancement at aviation altitudes being particularly hazardous to human health as pilots, crew, and airline passengers can be subjected to dangerous levels of radiation during a GLE. Through the use of a currently expanding library of analyzed GLEs and the application of a newly developed atmospheric radiation model, both of which have been created in‐house, we found a strong statistically significant relationship between real‐time NM data during GLE events and the radiation doses at aviation altitudes. This result provides a strong scientific basis for the use of real‐time NM data as a proxy for radiation dose estimates during GLE events and aids in the development of future nowcasting models to help mitigate the dangerous impacts of future GLEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信