基于不同范式的医学图像语义分割综述

Jianquan Tan, Wenrui Zhou, Ling Lin, Huxidan Jumahong
{"title":"基于不同范式的医学图像语义分割综述","authors":"Jianquan Tan, Wenrui Zhou, Ling Lin, Huxidan Jumahong","doi":"10.4018/ijswis.345246","DOIUrl":null,"url":null,"abstract":"In recent years, with the widespread application of medical images, the rapid and accurate identification of these regions of interest in a large number of medical images has received widespread attention. This article provides a review of medical image segmentation methods based on deep learning. Firstly, an overview of medical image segmentation methods was provided in the relevant knowledge, segmentation types, segmentation processes, and image processing applications. Secondly, the applications of supervised, semi supervised, and unsupervised methods in medical image segmentation were discussed, and their advantages, disadvantages, and applicable scenarios were revealed through the application of a large number of specific segmentation examples in practical scenarios. Finally, the commonly used medical image segmentation datasets and evaluation indicators were introduced, and the current medical image segmentation methods were summarized and prospected. This review provides a comprehensive and in-depth understanding for researchers in the field of medical image segmentation, and provides valuable references for the design and implementation of future related work.","PeriodicalId":508238,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"47 2‐3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review of Semantic Medical Image Segmentation Based on Different Paradigms\",\"authors\":\"Jianquan Tan, Wenrui Zhou, Ling Lin, Huxidan Jumahong\",\"doi\":\"10.4018/ijswis.345246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, with the widespread application of medical images, the rapid and accurate identification of these regions of interest in a large number of medical images has received widespread attention. This article provides a review of medical image segmentation methods based on deep learning. Firstly, an overview of medical image segmentation methods was provided in the relevant knowledge, segmentation types, segmentation processes, and image processing applications. Secondly, the applications of supervised, semi supervised, and unsupervised methods in medical image segmentation were discussed, and their advantages, disadvantages, and applicable scenarios were revealed through the application of a large number of specific segmentation examples in practical scenarios. Finally, the commonly used medical image segmentation datasets and evaluation indicators were introduced, and the current medical image segmentation methods were summarized and prospected. This review provides a comprehensive and in-depth understanding for researchers in the field of medical image segmentation, and provides valuable references for the design and implementation of future related work.\",\"PeriodicalId\":508238,\"journal\":{\"name\":\"International Journal on Semantic Web and Information Systems\",\"volume\":\"47 2‐3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Semantic Web and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijswis.345246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijswis.345246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,随着医学图像的广泛应用,如何在大量医学图像中快速、准确地识别这些感兴趣区域受到了广泛关注。本文对基于深度学习的医学图像分割方法进行了综述。首先,从相关知识、分割类型、分割过程和图像处理应用等方面概述了医学图像分割方法。其次,讨论了监督、半监督和无监督方法在医学图像分割中的应用,通过大量具体分割实例在实际场景中的应用,揭示了这些方法的优缺点和适用场景。最后,介绍了常用的医学图像分割数据集和评价指标,并对当前的医学图像分割方法进行了总结和展望。这篇综述为医学图像分割领域的研究人员提供了全面深入的了解,并为今后相关工作的设计和实施提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Review of Semantic Medical Image Segmentation Based on Different Paradigms
In recent years, with the widespread application of medical images, the rapid and accurate identification of these regions of interest in a large number of medical images has received widespread attention. This article provides a review of medical image segmentation methods based on deep learning. Firstly, an overview of medical image segmentation methods was provided in the relevant knowledge, segmentation types, segmentation processes, and image processing applications. Secondly, the applications of supervised, semi supervised, and unsupervised methods in medical image segmentation were discussed, and their advantages, disadvantages, and applicable scenarios were revealed through the application of a large number of specific segmentation examples in practical scenarios. Finally, the commonly used medical image segmentation datasets and evaluation indicators were introduced, and the current medical image segmentation methods were summarized and prospected. This review provides a comprehensive and in-depth understanding for researchers in the field of medical image segmentation, and provides valuable references for the design and implementation of future related work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信