用于个性化技术教育的先进机器学习技术

Enitan Shukurat Animashaun, Babajide Tolulope Familoni, Nneamaka Chisom Onyebuchi
{"title":"用于个性化技术教育的先进机器学习技术","authors":"Enitan Shukurat Animashaun, Babajide Tolulope Familoni, Nneamaka Chisom Onyebuchi","doi":"10.51594/csitrj.v5i6.1198","DOIUrl":null,"url":null,"abstract":"This review paper explores the intersection of advanced machine-learning techniques and personalised technology education. It examines how machine learning models can be leveraged to tailor educational content and teaching methods to individual learning styles and needs, focusing on adaptive learning systems and intelligent tutoring systems. The paper discusses challenges associated with implementing machine learning in education, including data quality, algorithmic bias, scalability, and ethical considerations related to data privacy and equitable access to personalised learning. Future research directions and strategies for overcoming these challenges are proposed, highlighting the importance of improving data quality, developing ethical guidelines, promoting educator training, and fostering stakeholder collaboration. Personalised technology education can enhance student empowerment and equal access to high-quality education by tackling these issues and adopting moral values. \nKeywords: Machine Learning, Personalised Education, Adaptive Learning Systems, Intelligent Tutoring Systems, Ethical Considerations, Educational Technology.","PeriodicalId":282796,"journal":{"name":"Computer Science & IT Research Journal","volume":" 54","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced machine learning techniques for personalising technology education\",\"authors\":\"Enitan Shukurat Animashaun, Babajide Tolulope Familoni, Nneamaka Chisom Onyebuchi\",\"doi\":\"10.51594/csitrj.v5i6.1198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review paper explores the intersection of advanced machine-learning techniques and personalised technology education. It examines how machine learning models can be leveraged to tailor educational content and teaching methods to individual learning styles and needs, focusing on adaptive learning systems and intelligent tutoring systems. The paper discusses challenges associated with implementing machine learning in education, including data quality, algorithmic bias, scalability, and ethical considerations related to data privacy and equitable access to personalised learning. Future research directions and strategies for overcoming these challenges are proposed, highlighting the importance of improving data quality, developing ethical guidelines, promoting educator training, and fostering stakeholder collaboration. Personalised technology education can enhance student empowerment and equal access to high-quality education by tackling these issues and adopting moral values. \\nKeywords: Machine Learning, Personalised Education, Adaptive Learning Systems, Intelligent Tutoring Systems, Ethical Considerations, Educational Technology.\",\"PeriodicalId\":282796,\"journal\":{\"name\":\"Computer Science & IT Research Journal\",\"volume\":\" 54\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science & IT Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51594/csitrj.v5i6.1198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science & IT Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51594/csitrj.v5i6.1198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这篇综述论文探讨了先进机器学习技术与个性化技术教育的交叉点。它以自适应学习系统和智能辅导系统为重点,探讨了如何利用机器学习模型根据个人学习风格和需求定制教育内容和教学方法。论文讨论了在教育领域实施机器学习所面临的挑战,包括数据质量、算法偏差、可扩展性以及与数据隐私和公平获得个性化学习相关的伦理考虑。提出了克服这些挑战的未来研究方向和策略,强调了提高数据质量、制定道德准则、促进教育工作者培训和促进利益相关者合作的重要性。个性化技术教育可以通过解决这些问题和采用道德价值观来增强学生的能力和平等接受高质量教育的机会。关键词机器学习、个性化教育、自适应学习系统、智能辅导系统、伦理考虑、教育技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced machine learning techniques for personalising technology education
This review paper explores the intersection of advanced machine-learning techniques and personalised technology education. It examines how machine learning models can be leveraged to tailor educational content and teaching methods to individual learning styles and needs, focusing on adaptive learning systems and intelligent tutoring systems. The paper discusses challenges associated with implementing machine learning in education, including data quality, algorithmic bias, scalability, and ethical considerations related to data privacy and equitable access to personalised learning. Future research directions and strategies for overcoming these challenges are proposed, highlighting the importance of improving data quality, developing ethical guidelines, promoting educator training, and fostering stakeholder collaboration. Personalised technology education can enhance student empowerment and equal access to high-quality education by tackling these issues and adopting moral values. Keywords: Machine Learning, Personalised Education, Adaptive Learning Systems, Intelligent Tutoring Systems, Ethical Considerations, Educational Technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信