Sara González-Delgado , Paula C. Rodríguez-Flores , Gonzalo Giribet
{"title":"测试双壳类动物(软体动物门:双壳类)中用于系统发育推断的超保守元素(UCE)。","authors":"Sara González-Delgado , Paula C. Rodríguez-Flores , Gonzalo Giribet","doi":"10.1016/j.ympev.2024.108129","DOIUrl":null,"url":null,"abstract":"<div><p>Bivalves constitute an important resource for fisheries and as cultural objects. Bivalve phylogenetics has had a long tradition using both morphological and molecular characters, and genomic resources are available for a good number of commercially important species. However, relationships among bivalve families have been unstable and major conflicting results exist between mitogenomics and results based on Sanger-based amplicon sequencing or phylotranscriptomics. Here we design and test an ultraconserved elements probe set for the class Bivalvia with the aim to use hundreds of loci without the need to sequence full genomes or transcriptomes, which are expensive and complex to analyze, and to open bivalve phylogenetics to museum specimens. Our probe set successfully captured 1,513 UCEs for a total of 263,800 bp with an average length of 174.59 ± 3.44 per UCE (ranging from 28 to 842 bp). Phylogenetic testing of this UCE probe set across Bivalvia and within the family Donacidae using different data matrices and methods for phylogenetic inference shows promising results at multiple taxonomic levels. In addition, our probe set was able to capture large numbers of UCEs for museum specimens collected before 1900 and from DNAs properly stored, of which many museums and laboratories are well stocked. Overall, this constitutes a novel and useful resource for bivalve phylogenetics.</p></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"198 ","pages":"Article 108129"},"PeriodicalIF":3.6000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing ultraconserved elements (UCEs) for phylogenetic inference across bivalves (Mollusca: Bivalvia)\",\"authors\":\"Sara González-Delgado , Paula C. Rodríguez-Flores , Gonzalo Giribet\",\"doi\":\"10.1016/j.ympev.2024.108129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bivalves constitute an important resource for fisheries and as cultural objects. Bivalve phylogenetics has had a long tradition using both morphological and molecular characters, and genomic resources are available for a good number of commercially important species. However, relationships among bivalve families have been unstable and major conflicting results exist between mitogenomics and results based on Sanger-based amplicon sequencing or phylotranscriptomics. Here we design and test an ultraconserved elements probe set for the class Bivalvia with the aim to use hundreds of loci without the need to sequence full genomes or transcriptomes, which are expensive and complex to analyze, and to open bivalve phylogenetics to museum specimens. Our probe set successfully captured 1,513 UCEs for a total of 263,800 bp with an average length of 174.59 ± 3.44 per UCE (ranging from 28 to 842 bp). Phylogenetic testing of this UCE probe set across Bivalvia and within the family Donacidae using different data matrices and methods for phylogenetic inference shows promising results at multiple taxonomic levels. In addition, our probe set was able to capture large numbers of UCEs for museum specimens collected before 1900 and from DNAs properly stored, of which many museums and laboratories are well stocked. Overall, this constitutes a novel and useful resource for bivalve phylogenetics.</p></div>\",\"PeriodicalId\":56109,\"journal\":{\"name\":\"Molecular Phylogenetics and Evolution\",\"volume\":\"198 \",\"pages\":\"Article 108129\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Phylogenetics and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1055790324001210\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Phylogenetics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1055790324001210","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Testing ultraconserved elements (UCEs) for phylogenetic inference across bivalves (Mollusca: Bivalvia)
Bivalves constitute an important resource for fisheries and as cultural objects. Bivalve phylogenetics has had a long tradition using both morphological and molecular characters, and genomic resources are available for a good number of commercially important species. However, relationships among bivalve families have been unstable and major conflicting results exist between mitogenomics and results based on Sanger-based amplicon sequencing or phylotranscriptomics. Here we design and test an ultraconserved elements probe set for the class Bivalvia with the aim to use hundreds of loci without the need to sequence full genomes or transcriptomes, which are expensive and complex to analyze, and to open bivalve phylogenetics to museum specimens. Our probe set successfully captured 1,513 UCEs for a total of 263,800 bp with an average length of 174.59 ± 3.44 per UCE (ranging from 28 to 842 bp). Phylogenetic testing of this UCE probe set across Bivalvia and within the family Donacidae using different data matrices and methods for phylogenetic inference shows promising results at multiple taxonomic levels. In addition, our probe set was able to capture large numbers of UCEs for museum specimens collected before 1900 and from DNAs properly stored, of which many museums and laboratories are well stocked. Overall, this constitutes a novel and useful resource for bivalve phylogenetics.
期刊介绍:
Molecular Phylogenetics and Evolution is dedicated to bringing Darwin''s dream within grasp - to "have fairly true genealogical trees of each great kingdom of Nature." The journal provides a forum for molecular studies that advance our understanding of phylogeny and evolution, further the development of phylogenetically more accurate taxonomic classifications, and ultimately bring a unified classification for all the ramifying lines of life. Phylogeographic studies will be considered for publication if they offer EXCEPTIONAL theoretical or empirical advances.