Yuerong Liu , Lulu Yang , Yongxin Ma, Yufei Zhou, Shangyu Zhang, Qianwei Liu, Fengwang Ma, Changhai Liu
{"title":"HD-Zip I 转录因子 MdHB-7 负向调节苹果对格洛美拉叶斑病的抗性","authors":"Yuerong Liu , Lulu Yang , Yongxin Ma, Yufei Zhou, Shangyu Zhang, Qianwei Liu, Fengwang Ma, Changhai Liu","doi":"10.1016/j.jplph.2024.154277","DOIUrl":null,"url":null,"abstract":"<div><p>Glomerella leaf spot (GLS), caused by <em>Colletotrichum fructicola</em> (Cf), has been one of the main fungal diseases afflicting apple-producing areas across the world for many years, and it has led to substantial reductions in apple output and quality. HD-Zip transcription factors have been identified in several species, and they are involved in the immune response of plants to various types of biotic stress. In this study, inoculation of <em>MdHB-7</em> overexpressing (<em>MdHB-7-</em>OE) and interference (<em>MdHB-7-</em>RNAi) transgenic plants with Cf revealed that <em>MdHB-7</em>, which encodes an HD-Zip transcription factor, adversely affects GLS resistance. The SA content and the expression of SA pathway-related genes were lower in <em>MdHB-7-</em>OE plants than in ‘GL-3’ plants; the content of ABA and the expression of ABA biosynthesis genes were higher in <em>MdHB-7-</em>OE plants than in ‘GL-3’ plants. Further analysis indicated that the content of phenolics and chitinase and β-1, 3 glucanase activities were lower and H<sub>2</sub>O<sub>2</sub> accumulation was higher in <em>MdHB-7-</em>OE plants than in ‘GL-3’ plants. The opposite patterns were observed in <em>MdHB-7-</em>RNAi apple plants. Overall, our results indicate that <em>MdHB-7</em> plays a negative role in regulating defense against GLS in apple, which is likely achieved by altering the content of SA, ABA, polyphenols, the activities of defense-related enzymes, and the content of H<sub>2</sub>O<sub>2</sub>.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"299 ","pages":"Article 154277"},"PeriodicalIF":4.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The HD-Zip I transcription factor MdHB-7 negatively regulates resistance to Glomerella leaf spot in apple\",\"authors\":\"Yuerong Liu , Lulu Yang , Yongxin Ma, Yufei Zhou, Shangyu Zhang, Qianwei Liu, Fengwang Ma, Changhai Liu\",\"doi\":\"10.1016/j.jplph.2024.154277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Glomerella leaf spot (GLS), caused by <em>Colletotrichum fructicola</em> (Cf), has been one of the main fungal diseases afflicting apple-producing areas across the world for many years, and it has led to substantial reductions in apple output and quality. HD-Zip transcription factors have been identified in several species, and they are involved in the immune response of plants to various types of biotic stress. In this study, inoculation of <em>MdHB-7</em> overexpressing (<em>MdHB-7-</em>OE) and interference (<em>MdHB-7-</em>RNAi) transgenic plants with Cf revealed that <em>MdHB-7</em>, which encodes an HD-Zip transcription factor, adversely affects GLS resistance. The SA content and the expression of SA pathway-related genes were lower in <em>MdHB-7-</em>OE plants than in ‘GL-3’ plants; the content of ABA and the expression of ABA biosynthesis genes were higher in <em>MdHB-7-</em>OE plants than in ‘GL-3’ plants. Further analysis indicated that the content of phenolics and chitinase and β-1, 3 glucanase activities were lower and H<sub>2</sub>O<sub>2</sub> accumulation was higher in <em>MdHB-7-</em>OE plants than in ‘GL-3’ plants. The opposite patterns were observed in <em>MdHB-7-</em>RNAi apple plants. Overall, our results indicate that <em>MdHB-7</em> plays a negative role in regulating defense against GLS in apple, which is likely achieved by altering the content of SA, ABA, polyphenols, the activities of defense-related enzymes, and the content of H<sub>2</sub>O<sub>2</sub>.</p></div>\",\"PeriodicalId\":16808,\"journal\":{\"name\":\"Journal of plant physiology\",\"volume\":\"299 \",\"pages\":\"Article 154277\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of plant physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0176161724001081\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161724001081","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
多年来,由果孢子菌(Colletotrichum fructicola,Cf)引起的苹果叶斑病(Glomerella leaf spot,GLS)一直是困扰全球苹果产区的主要真菌病害之一,导致苹果产量和质量大幅下降。HD-Zip 转录因子已在多个物种中被发现,它们参与植物对各种生物胁迫的免疫反应。在本研究中,用 Cf 接种 MdHB-7 超表达(MdHB-7-OE)和干扰(MdHB-7-RNAi)转基因植株发现,编码 HD-Zip 转录因子的 MdHB-7 会对 GLS 抗性产生不利影响。与 "GL-3 "植株相比,MdHB-7-OE 植株的 SA 含量和 SA 途径相关基因的表达量较低;与 "GL-3 "植株相比,MdHB-7-OE 植株的 ABA 含量和 ABA 生物合成基因的表达量较高。进一步分析表明,与'GL-3'植株相比,MdHB-7-OE 植株的酚类物质含量、几丁质酶和β-1, 3葡聚糖酶活性较低,H2O2 积累较高。在 MdHB-7-RNAi 苹果植株中观察到了相反的模式。总之,我们的研究结果表明,MdHB-7 在调节苹果对 GLS 的防御中起着负面作用,这可能是通过改变 SA、ABA、多酚的含量、防御相关酶的活性和 H2O2 的含量来实现的。
The HD-Zip I transcription factor MdHB-7 negatively regulates resistance to Glomerella leaf spot in apple
Glomerella leaf spot (GLS), caused by Colletotrichum fructicola (Cf), has been one of the main fungal diseases afflicting apple-producing areas across the world for many years, and it has led to substantial reductions in apple output and quality. HD-Zip transcription factors have been identified in several species, and they are involved in the immune response of plants to various types of biotic stress. In this study, inoculation of MdHB-7 overexpressing (MdHB-7-OE) and interference (MdHB-7-RNAi) transgenic plants with Cf revealed that MdHB-7, which encodes an HD-Zip transcription factor, adversely affects GLS resistance. The SA content and the expression of SA pathway-related genes were lower in MdHB-7-OE plants than in ‘GL-3’ plants; the content of ABA and the expression of ABA biosynthesis genes were higher in MdHB-7-OE plants than in ‘GL-3’ plants. Further analysis indicated that the content of phenolics and chitinase and β-1, 3 glucanase activities were lower and H2O2 accumulation was higher in MdHB-7-OE plants than in ‘GL-3’ plants. The opposite patterns were observed in MdHB-7-RNAi apple plants. Overall, our results indicate that MdHB-7 plays a negative role in regulating defense against GLS in apple, which is likely achieved by altering the content of SA, ABA, polyphenols, the activities of defense-related enzymes, and the content of H2O2.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.