利用六价铬铁氧化技术降解苯酚过程中被忽视的氯化偶联副产品的形成

IF 5.9 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Dan Tao , Yuxin Zhou , Laura Carter , Chengxuan Tian , Na Qin , Kehao Li , Fan Zhang
{"title":"利用六价铬铁氧化技术降解苯酚过程中被忽视的氯化偶联副产品的形成","authors":"Dan Tao ,&nbsp;Yuxin Zhou ,&nbsp;Laura Carter ,&nbsp;Chengxuan Tian ,&nbsp;Na Qin ,&nbsp;Kehao Li ,&nbsp;Fan Zhang","doi":"10.1016/j.jes.2024.05.024","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, ferrate(VI) oxidation technology (FOT) has been regarded as one of the most promising options for the degradation of emerging organic pollutants. However, the role and transformation of chloride ions (Cl<sup>−</sup>) in FOT have not been well explored. The current study aims to investigate the formation of chlorinated phenolic byproducts upon ferrate(VI) oxidation processes. The obtained results indicate that chlorides suffering ferrate(VI) attack will be transformed to active chlorine species (ACS), which will subsequently lead to the formation of highly toxic aromatic chlorinated byproducts. The identified byproducts include common chlorinated phenolic derivatives, as well as complex chlorinated oligomer byproducts with ether structures (mainly dimers and trimers). While the formation of common chlorophenols can be ascribed to the electrophilic substitution reactions mediated by ACS, the oligomer byproducts are generated via coupling reactions between chlorinated phenoxy radicals. ECOSAR software predicts that the generated chlorinated oligomer byproducts exhibit high ecotoxicological effects. As a whole, the above findings shed light on the potential risk of FOT in real practice.</p></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":"152 ","pages":"Pages 429-441"},"PeriodicalIF":5.9000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overlooked formation of chlorinated coupling byproducts during phenol degradation with ferrate(VI) oxidation technology\",\"authors\":\"Dan Tao ,&nbsp;Yuxin Zhou ,&nbsp;Laura Carter ,&nbsp;Chengxuan Tian ,&nbsp;Na Qin ,&nbsp;Kehao Li ,&nbsp;Fan Zhang\",\"doi\":\"10.1016/j.jes.2024.05.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Currently, ferrate(VI) oxidation technology (FOT) has been regarded as one of the most promising options for the degradation of emerging organic pollutants. However, the role and transformation of chloride ions (Cl<sup>−</sup>) in FOT have not been well explored. The current study aims to investigate the formation of chlorinated phenolic byproducts upon ferrate(VI) oxidation processes. The obtained results indicate that chlorides suffering ferrate(VI) attack will be transformed to active chlorine species (ACS), which will subsequently lead to the formation of highly toxic aromatic chlorinated byproducts. The identified byproducts include common chlorinated phenolic derivatives, as well as complex chlorinated oligomer byproducts with ether structures (mainly dimers and trimers). While the formation of common chlorophenols can be ascribed to the electrophilic substitution reactions mediated by ACS, the oligomer byproducts are generated via coupling reactions between chlorinated phenoxy radicals. ECOSAR software predicts that the generated chlorinated oligomer byproducts exhibit high ecotoxicological effects. As a whole, the above findings shed light on the potential risk of FOT in real practice.</p></div>\",\"PeriodicalId\":15788,\"journal\":{\"name\":\"Journal of Environmental Sciences-china\",\"volume\":\"152 \",\"pages\":\"Pages 429-441\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Sciences-china\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001074224002638\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074224002638","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目前,铁酸(VI)氧化技术(FOT)已被视为降解新出现的有机污染物的最有前途的方法之一。然而,氯离子(Cl-)在 FOT 中的作用和转化尚未得到很好的探讨。本研究旨在调查在六价铬铁氧化过程中氯化酚类副产物的形成。研究结果表明,受到六价铬铁侵蚀的氯化物会转化为活性氯物种(ACS),进而形成剧毒的芳香族氯化副产品。已确定的副产品包括常见的氯化酚衍生物,以及具有醚结构(主要是二聚体和三聚体)的复杂氯化低聚物副产品。普通氯酚的形成可归因于由 ACS 介导的亲电取代反应,而低聚物副产品则是通过氯化苯氧自由基之间的偶联反应生成的。根据 ECOSAR 软件预测,生成的氯化低聚物副产物具有较高的生态毒理效应。总之,上述发现揭示了 FOT 在实际应用中的潜在风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Overlooked formation of chlorinated coupling byproducts during phenol degradation with ferrate(VI) oxidation technology

Overlooked formation of chlorinated coupling byproducts during phenol degradation with ferrate(VI) oxidation technology

Currently, ferrate(VI) oxidation technology (FOT) has been regarded as one of the most promising options for the degradation of emerging organic pollutants. However, the role and transformation of chloride ions (Cl) in FOT have not been well explored. The current study aims to investigate the formation of chlorinated phenolic byproducts upon ferrate(VI) oxidation processes. The obtained results indicate that chlorides suffering ferrate(VI) attack will be transformed to active chlorine species (ACS), which will subsequently lead to the formation of highly toxic aromatic chlorinated byproducts. The identified byproducts include common chlorinated phenolic derivatives, as well as complex chlorinated oligomer byproducts with ether structures (mainly dimers and trimers). While the formation of common chlorophenols can be ascribed to the electrophilic substitution reactions mediated by ACS, the oligomer byproducts are generated via coupling reactions between chlorinated phenoxy radicals. ECOSAR software predicts that the generated chlorinated oligomer byproducts exhibit high ecotoxicological effects. As a whole, the above findings shed light on the potential risk of FOT in real practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Sciences-china
Journal of Environmental Sciences-china 环境科学-环境科学
CiteScore
13.70
自引率
0.00%
发文量
6354
审稿时长
2.6 months
期刊介绍: The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信