无穷多个黎曼曲面上的魏尔斯特拉斯点具有传递作用

IF 0.8 3区 数学 Q2 MATHEMATICS
Sebastián Reyes-Carocca, Pietro Speziali
{"title":"无穷多个黎曼曲面上的魏尔斯特拉斯点具有传递作用","authors":"Sebastián Reyes-Carocca,&nbsp;Pietro Speziali","doi":"10.1112/blms.13088","DOIUrl":null,"url":null,"abstract":"<p>In this short note, we prove the existence of infinitely many pairwise nonisomorphic, non-hyperelliptic Riemann surfaces with automorphism group acting transitively on the Weierstrass points. We also find all compact Riemann surfaces with automorphism group acting transitively on the Weierstrass points, under the assumption that they are simple.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2625-2633"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitely many Riemann surfaces with a transitive action on the Weierstrass points\",\"authors\":\"Sebastián Reyes-Carocca,&nbsp;Pietro Speziali\",\"doi\":\"10.1112/blms.13088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this short note, we prove the existence of infinitely many pairwise nonisomorphic, non-hyperelliptic Riemann surfaces with automorphism group acting transitively on the Weierstrass points. We also find all compact Riemann surfaces with automorphism group acting transitively on the Weierstrass points, under the assumption that they are simple.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 8\",\"pages\":\"2625-2633\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13088\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13088","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇短文中,我们证明了无穷多个成对非同构、非褶皱黎曼曲面的存在,这些曲面的自变群在魏尔斯特拉斯点上起着瞬时作用。我们还发现了所有紧凑黎曼曲面,在它们是简单曲面的假设条件下,其自形群在魏尔斯特拉斯点上起传递作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinitely many Riemann surfaces with a transitive action on the Weierstrass points

In this short note, we prove the existence of infinitely many pairwise nonisomorphic, non-hyperelliptic Riemann surfaces with automorphism group acting transitively on the Weierstrass points. We also find all compact Riemann surfaces with automorphism group acting transitively on the Weierstrass points, under the assumption that they are simple.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信