Sergei Vostrikov;Matteo Anderegg;Luca Benini;Andrea Cossettini
{"title":"利用可穿戴超低功耗超声波从原始数据中提取无监督特征进行手势识别。","authors":"Sergei Vostrikov;Matteo Anderegg;Luca Benini;Andrea Cossettini","doi":"10.1109/TUFFC.2024.3404997","DOIUrl":null,"url":null,"abstract":"Wearable ultrasound (US) is a novel sensing approach that shows promise in multiple application domains, and specifically in hand gesture recognition (HGR). In fact, US enables to collect information from deep musculoskeletal structures at high spatiotemporal resolution and high signal-to-noise ratio, making it a perfect candidate to complement surface electromyography for improved accuracy performance and on-the-edge classification. However, existing wearable solutions for US-based gesture recognition are not sufficiently low power for continuous, long-term operation. On top of that, practical hardware limitations of wearable US devices (limited power budget, reduced wireless throughput, and restricted computational power) set the need for the compressed size of models for feature extraction and classification. To overcome these limitations, this article presents a novel end-to-end approach for feature extraction from raw musculoskeletal US data suited for edge computing, coupled with an armband for HGR based on a truly wearable (12 cm2, 9 g), ultralow-power (ULP) (16 mW) US probe. The proposed approach uses a 1-D convolutional autoencoder (CAE) to compress raw US data by \n<inline-formula> <tex-math>$20\\times $ </tex-math></inline-formula>\n while preserving the main amplitude features of the envelope signal. The latent features of the autoencoder are used to train an XGBoost classifier for HGR on datasets collected with a custom US armband, considering armband removal/repositioning in between sessions. Our approach achieves a classification accuracy of 96%. Furthermore, the proposed unsupervised feature extraction approach offers generalization capabilities for intersubject use, as demonstrated by testing the pretrained encoder on a different subject and conducting posttraining analysis, revealing that the operations performed by the encoder are subject-independent. The autoencoder is also quantized to 8-bit integers and deployed on a ULP wearable US probe along with the XGBoost classifier, allowing for a gesture recognition rate \n<inline-formula> <tex-math>$\\geq 25$ </tex-math></inline-formula>\n Hz and leading to 21% lower power consumption [at 30 frames/s (FPS)] compared to the conventional approach (raw data transmission and remote processing).","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 7","pages":"831-841"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Feature Extraction From Raw Data for Gesture Recognition With Wearable Ultralow-Power Ultrasound\",\"authors\":\"Sergei Vostrikov;Matteo Anderegg;Luca Benini;Andrea Cossettini\",\"doi\":\"10.1109/TUFFC.2024.3404997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wearable ultrasound (US) is a novel sensing approach that shows promise in multiple application domains, and specifically in hand gesture recognition (HGR). In fact, US enables to collect information from deep musculoskeletal structures at high spatiotemporal resolution and high signal-to-noise ratio, making it a perfect candidate to complement surface electromyography for improved accuracy performance and on-the-edge classification. However, existing wearable solutions for US-based gesture recognition are not sufficiently low power for continuous, long-term operation. On top of that, practical hardware limitations of wearable US devices (limited power budget, reduced wireless throughput, and restricted computational power) set the need for the compressed size of models for feature extraction and classification. To overcome these limitations, this article presents a novel end-to-end approach for feature extraction from raw musculoskeletal US data suited for edge computing, coupled with an armband for HGR based on a truly wearable (12 cm2, 9 g), ultralow-power (ULP) (16 mW) US probe. The proposed approach uses a 1-D convolutional autoencoder (CAE) to compress raw US data by \\n<inline-formula> <tex-math>$20\\\\times $ </tex-math></inline-formula>\\n while preserving the main amplitude features of the envelope signal. The latent features of the autoencoder are used to train an XGBoost classifier for HGR on datasets collected with a custom US armband, considering armband removal/repositioning in between sessions. Our approach achieves a classification accuracy of 96%. Furthermore, the proposed unsupervised feature extraction approach offers generalization capabilities for intersubject use, as demonstrated by testing the pretrained encoder on a different subject and conducting posttraining analysis, revealing that the operations performed by the encoder are subject-independent. The autoencoder is also quantized to 8-bit integers and deployed on a ULP wearable US probe along with the XGBoost classifier, allowing for a gesture recognition rate \\n<inline-formula> <tex-math>$\\\\geq 25$ </tex-math></inline-formula>\\n Hz and leading to 21% lower power consumption [at 30 frames/s (FPS)] compared to the conventional approach (raw data transmission and remote processing).\",\"PeriodicalId\":13322,\"journal\":{\"name\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"volume\":\"71 7\",\"pages\":\"831-841\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10538295/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10538295/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Unsupervised Feature Extraction From Raw Data for Gesture Recognition With Wearable Ultralow-Power Ultrasound
Wearable ultrasound (US) is a novel sensing approach that shows promise in multiple application domains, and specifically in hand gesture recognition (HGR). In fact, US enables to collect information from deep musculoskeletal structures at high spatiotemporal resolution and high signal-to-noise ratio, making it a perfect candidate to complement surface electromyography for improved accuracy performance and on-the-edge classification. However, existing wearable solutions for US-based gesture recognition are not sufficiently low power for continuous, long-term operation. On top of that, practical hardware limitations of wearable US devices (limited power budget, reduced wireless throughput, and restricted computational power) set the need for the compressed size of models for feature extraction and classification. To overcome these limitations, this article presents a novel end-to-end approach for feature extraction from raw musculoskeletal US data suited for edge computing, coupled with an armband for HGR based on a truly wearable (12 cm2, 9 g), ultralow-power (ULP) (16 mW) US probe. The proposed approach uses a 1-D convolutional autoencoder (CAE) to compress raw US data by
$20\times $
while preserving the main amplitude features of the envelope signal. The latent features of the autoencoder are used to train an XGBoost classifier for HGR on datasets collected with a custom US armband, considering armband removal/repositioning in between sessions. Our approach achieves a classification accuracy of 96%. Furthermore, the proposed unsupervised feature extraction approach offers generalization capabilities for intersubject use, as demonstrated by testing the pretrained encoder on a different subject and conducting posttraining analysis, revealing that the operations performed by the encoder are subject-independent. The autoencoder is also quantized to 8-bit integers and deployed on a ULP wearable US probe along with the XGBoost classifier, allowing for a gesture recognition rate
$\geq 25$
Hz and leading to 21% lower power consumption [at 30 frames/s (FPS)] compared to the conventional approach (raw data transmission and remote processing).
期刊介绍:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.