Xiangbo Duan , Yanang Xu , Yimei Liu , Xingjian Xu , Li Wen , Jun Fang , Yang Yu
{"title":"铁转运体 1 OsIRT1 积极调控油菜对盐碱胁迫的耐受性","authors":"Xiangbo Duan , Yanang Xu , Yimei Liu , Xingjian Xu , Li Wen , Jun Fang , Yang Yu","doi":"10.1016/j.jplph.2024.154272","DOIUrl":null,"url":null,"abstract":"<div><p>Soil salinization–alkalization severely affects plant growth and crop yield worldwide, especially in the Songnen Plain of Northeast China. Saline–alkaline stress increases the pH around the plant roots, thereby limiting the absorption and transportation of nutrients and ions, such as iron (Fe). Fe is an essential micronutrient that plays important roles in many metabolic processes during plant growth and development, and it is acquired by the root cells via iron-regulated transporter1 (IRT1). However, the function of <em>Oryza sativa</em> IRT1 (<em>OsIRT1</em>) under soda saline–alkaline stress remains unknown. Therefore, in this study, we generated <em>OsIRT1</em> mutant lines and <em>OsIRT1</em>-overexpressing lines in the background of the <em>O. sativa</em> Songjing2 cultivar to investigate the roles of <em>OsIRT1</em> under soda saline–alkaline stress. The <em>OsIRT1-</em>overexpressing lines exhibited higher tolerance to saline–alkaline stress compared to the mutant lines during germination and seedling stages. Moreover, the expression of some saline–alkaline stress-related genes and Fe uptake and transport-related genes were altered. Furthermore, Fe and Zn contents were upregulated in the <em>OsIRT1</em>-overexpressing lines under saline–alkaline stress. Further analysis revealed that Fe and Zn supplementation increased the tolerance of <em>O. sativa</em> seedlings to saline–alkaline stress. Altogether, our results indicate that OsIRT1 plays a significant role in <em>O. sativa</em> by repairing the saline–alkaline stress-induced damage. Our findings provide novel insights into the role of OsIRT1 in <em>O. sativa</em> under soda saline–alkaline stress and suggest that <em>OsIRT1</em> can serve as a potential target gene for the development of saline–alkaline stress-tolerant <em>O. sativa</em> plants.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"299 ","pages":"Article 154272"},"PeriodicalIF":4.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron transporter1 OsIRT1 positively regulates saline–alkaline stress tolerance in Oryza sativa\",\"authors\":\"Xiangbo Duan , Yanang Xu , Yimei Liu , Xingjian Xu , Li Wen , Jun Fang , Yang Yu\",\"doi\":\"10.1016/j.jplph.2024.154272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soil salinization–alkalization severely affects plant growth and crop yield worldwide, especially in the Songnen Plain of Northeast China. Saline–alkaline stress increases the pH around the plant roots, thereby limiting the absorption and transportation of nutrients and ions, such as iron (Fe). Fe is an essential micronutrient that plays important roles in many metabolic processes during plant growth and development, and it is acquired by the root cells via iron-regulated transporter1 (IRT1). However, the function of <em>Oryza sativa</em> IRT1 (<em>OsIRT1</em>) under soda saline–alkaline stress remains unknown. Therefore, in this study, we generated <em>OsIRT1</em> mutant lines and <em>OsIRT1</em>-overexpressing lines in the background of the <em>O. sativa</em> Songjing2 cultivar to investigate the roles of <em>OsIRT1</em> under soda saline–alkaline stress. The <em>OsIRT1-</em>overexpressing lines exhibited higher tolerance to saline–alkaline stress compared to the mutant lines during germination and seedling stages. Moreover, the expression of some saline–alkaline stress-related genes and Fe uptake and transport-related genes were altered. Furthermore, Fe and Zn contents were upregulated in the <em>OsIRT1</em>-overexpressing lines under saline–alkaline stress. Further analysis revealed that Fe and Zn supplementation increased the tolerance of <em>O. sativa</em> seedlings to saline–alkaline stress. Altogether, our results indicate that OsIRT1 plays a significant role in <em>O. sativa</em> by repairing the saline–alkaline stress-induced damage. Our findings provide novel insights into the role of OsIRT1 in <em>O. sativa</em> under soda saline–alkaline stress and suggest that <em>OsIRT1</em> can serve as a potential target gene for the development of saline–alkaline stress-tolerant <em>O. sativa</em> plants.</p></div>\",\"PeriodicalId\":16808,\"journal\":{\"name\":\"Journal of plant physiology\",\"volume\":\"299 \",\"pages\":\"Article 154272\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of plant physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0176161724001032\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161724001032","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Iron transporter1 OsIRT1 positively regulates saline–alkaline stress tolerance in Oryza sativa
Soil salinization–alkalization severely affects plant growth and crop yield worldwide, especially in the Songnen Plain of Northeast China. Saline–alkaline stress increases the pH around the plant roots, thereby limiting the absorption and transportation of nutrients and ions, such as iron (Fe). Fe is an essential micronutrient that plays important roles in many metabolic processes during plant growth and development, and it is acquired by the root cells via iron-regulated transporter1 (IRT1). However, the function of Oryza sativa IRT1 (OsIRT1) under soda saline–alkaline stress remains unknown. Therefore, in this study, we generated OsIRT1 mutant lines and OsIRT1-overexpressing lines in the background of the O. sativa Songjing2 cultivar to investigate the roles of OsIRT1 under soda saline–alkaline stress. The OsIRT1-overexpressing lines exhibited higher tolerance to saline–alkaline stress compared to the mutant lines during germination and seedling stages. Moreover, the expression of some saline–alkaline stress-related genes and Fe uptake and transport-related genes were altered. Furthermore, Fe and Zn contents were upregulated in the OsIRT1-overexpressing lines under saline–alkaline stress. Further analysis revealed that Fe and Zn supplementation increased the tolerance of O. sativa seedlings to saline–alkaline stress. Altogether, our results indicate that OsIRT1 plays a significant role in O. sativa by repairing the saline–alkaline stress-induced damage. Our findings provide novel insights into the role of OsIRT1 in O. sativa under soda saline–alkaline stress and suggest that OsIRT1 can serve as a potential target gene for the development of saline–alkaline stress-tolerant O. sativa plants.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.