{"title":"马廷格尔和检验理论前序随机性中的不精确性","authors":"Floris Persiau, Gert de Cooman","doi":"10.1016/j.ijar.2024.109213","DOIUrl":null,"url":null,"abstract":"<div><p>In a prequential approach to algorithmic randomness, probabilities for the next outcome can be forecast ‘on the fly’ without the need for fully specifying a probability measure on all possible sequences of outcomes, as is the case in the more standard approach. We take the first steps in allowing for probability intervals instead of precise probabilities on this prequential approach, based on ideas borrowed from our earlier imprecise-probabilistic, standard account of algorithmic randomness. We define what it means for an infinite sequence <span><math><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>)</mo></math></span> of successive interval forecasts <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> and subsequent binary outcomes <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> to be random, both in a martingale-theoretic and a test-theoretic sense. We prove that these two versions of prequential randomness coincide, we compare the resulting prequential randomness notions with the more standard ones, and we investigate where the prequential and standard randomness notions coincide.</p></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"170 ","pages":"Article 109213"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Imprecision in martingale- and test-theoretic prequential randomness\",\"authors\":\"Floris Persiau, Gert de Cooman\",\"doi\":\"10.1016/j.ijar.2024.109213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a prequential approach to algorithmic randomness, probabilities for the next outcome can be forecast ‘on the fly’ without the need for fully specifying a probability measure on all possible sequences of outcomes, as is the case in the more standard approach. We take the first steps in allowing for probability intervals instead of precise probabilities on this prequential approach, based on ideas borrowed from our earlier imprecise-probabilistic, standard account of algorithmic randomness. We define what it means for an infinite sequence <span><math><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>)</mo></math></span> of successive interval forecasts <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> and subsequent binary outcomes <span><math><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> to be random, both in a martingale-theoretic and a test-theoretic sense. We prove that these two versions of prequential randomness coincide, we compare the resulting prequential randomness notions with the more standard ones, and we investigate where the prequential and standard randomness notions coincide.</p></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"170 \",\"pages\":\"Article 109213\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X24001002\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24001002","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
在算法随机性的前序方法中,可以 "即时 "预测下一个结果的概率,而无需像更标准的方法那样,完全指定所有可能结果序列的概率度量。我们借鉴了早先关于算法随机性的不精确概率标准论述,并在此基础上迈出了第一步,允许用概率区间代替精确概率。我们定义了连续区间预测 Ik 的无穷序列(I1,x1,I2,x2,......)和随后的二元结果 xk 在马丁格尔理论和检验理论意义上的随机性。我们证明这两个版本的前序随机性是重合的,我们将由此得出的前序随机性概念与更标准的随机性概念进行比较,并研究前序随机性概念与标准随机性概念的重合之处。
Imprecision in martingale- and test-theoretic prequential randomness
In a prequential approach to algorithmic randomness, probabilities for the next outcome can be forecast ‘on the fly’ without the need for fully specifying a probability measure on all possible sequences of outcomes, as is the case in the more standard approach. We take the first steps in allowing for probability intervals instead of precise probabilities on this prequential approach, based on ideas borrowed from our earlier imprecise-probabilistic, standard account of algorithmic randomness. We define what it means for an infinite sequence of successive interval forecasts and subsequent binary outcomes to be random, both in a martingale-theoretic and a test-theoretic sense. We prove that these two versions of prequential randomness coincide, we compare the resulting prequential randomness notions with the more standard ones, and we investigate where the prequential and standard randomness notions coincide.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.