{"title":"未受污染的龙宫颗粒实验室风化的矿物学方法:与 Orgueil 的比较以及储存和分析的前景","authors":"Naoya Imae, Naotaka Tomioka, Masayuki Uesugi, Makoto Kimura, Akira Yamaguchi, Motoo Ito, Richard C. Greenwood, Tatsuya Kawai, Naoki Shirai, Takuji Ohigashi, Cedric Pilorget, Jean-Pierre Bibring, Ming-Chang Liu, Kentaro Uesugi, Aiko Nakato, Kasumi Yogata, Hayato Yuzawa, Yu Kodama, Masahiro Yasutake, Kaori Hirahara, Akihisa Takeuchi, Ikuya Sakurai, Ikuo Okada, Yuzuru Karouji, Toru Yada, Masanao Abe, Tomohiro Usui","doi":"10.1111/maps.14178","DOIUrl":null,"url":null,"abstract":"<p>Although CI chondrites are susceptible to terrestrial weathering on Earth, the specific processes are unknown. To elucidate the weathering mechanism, we conduct a laboratory experiment using pristine particles from asteroid Ryugu. Air-exposed particles predominantly develop small-sized euhedral Ca-S-rich grains (0.5–1 μm) on the particle surface and along open cracks. Both transmission electron microscopy and synchrotron-based computed tomography combined with XRD reveal that the grains are hydrous Ca-sulfate. Notably, this phase does not form in vacuum- or nitrogen-stored particles, suggesting this result is due to laboratory weathering. We also compare the Orgueil CI chondrite with the altered Ryugu particles. Due to the weathering of pyrrhotite and dolomite, Orgueil contains a significant amount of gypsum and ferrihydrite. We suggest that mineralogical changes due to terrestrial weathering of particles returned directly from asteroid occur even after a short-time air exposure. Consequently, conducting prompt analyses and ensuring proper storage conditions are crucial, especially to preserve the primordial features of organics and volatiles.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 7","pages":"1705-1722"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14178","citationCount":"0","resultStr":"{\"title\":\"Mineralogical approach on laboratory weathering of uncontaminated Ryugu particles: Comparison with Orgueil and perspective for storage and analysis\",\"authors\":\"Naoya Imae, Naotaka Tomioka, Masayuki Uesugi, Makoto Kimura, Akira Yamaguchi, Motoo Ito, Richard C. Greenwood, Tatsuya Kawai, Naoki Shirai, Takuji Ohigashi, Cedric Pilorget, Jean-Pierre Bibring, Ming-Chang Liu, Kentaro Uesugi, Aiko Nakato, Kasumi Yogata, Hayato Yuzawa, Yu Kodama, Masahiro Yasutake, Kaori Hirahara, Akihisa Takeuchi, Ikuya Sakurai, Ikuo Okada, Yuzuru Karouji, Toru Yada, Masanao Abe, Tomohiro Usui\",\"doi\":\"10.1111/maps.14178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although CI chondrites are susceptible to terrestrial weathering on Earth, the specific processes are unknown. To elucidate the weathering mechanism, we conduct a laboratory experiment using pristine particles from asteroid Ryugu. Air-exposed particles predominantly develop small-sized euhedral Ca-S-rich grains (0.5–1 μm) on the particle surface and along open cracks. Both transmission electron microscopy and synchrotron-based computed tomography combined with XRD reveal that the grains are hydrous Ca-sulfate. Notably, this phase does not form in vacuum- or nitrogen-stored particles, suggesting this result is due to laboratory weathering. We also compare the Orgueil CI chondrite with the altered Ryugu particles. Due to the weathering of pyrrhotite and dolomite, Orgueil contains a significant amount of gypsum and ferrihydrite. We suggest that mineralogical changes due to terrestrial weathering of particles returned directly from asteroid occur even after a short-time air exposure. Consequently, conducting prompt analyses and ensuring proper storage conditions are crucial, especially to preserve the primordial features of organics and volatiles.</p>\",\"PeriodicalId\":18555,\"journal\":{\"name\":\"Meteoritics & Planetary Science\",\"volume\":\"59 7\",\"pages\":\"1705-1722\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14178\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteoritics & Planetary Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/maps.14178\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14178","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
虽然CI软玉容易受到地球上陆地风化作用的影响,但具体过程尚不清楚。为了阐明风化机制,我们利用小行星龙宫的原始颗粒进行了实验室实验。暴露在空气中的颗粒主要在颗粒表面和开放裂缝处形成富含 Ca-S 的小尺寸八面体颗粒(0.5-1 μm)。透射电子显微镜和同步辐射计算机断层扫描结合 XRD 显示,这些晶粒是水合硫酸钙。值得注意的是,在真空或氮气储存的颗粒中不会形成这种相,这表明这一结果是由于实验室风化造成的。我们还将 Orgueil CI chondrite 与经过改变的龙宫颗粒进行了比较。由于黄铁矿和白云石的风化,Orgueil含有大量石膏和铁水物。我们认为,从小行星上直接返回的颗粒即使经过短时间的空气暴露,也会因陆地风化而发生矿物学变化。因此,及时进行分析和确保适当的储存条件至关重要,特别是要保留有机物和挥发物的原始特征。
Mineralogical approach on laboratory weathering of uncontaminated Ryugu particles: Comparison with Orgueil and perspective for storage and analysis
Although CI chondrites are susceptible to terrestrial weathering on Earth, the specific processes are unknown. To elucidate the weathering mechanism, we conduct a laboratory experiment using pristine particles from asteroid Ryugu. Air-exposed particles predominantly develop small-sized euhedral Ca-S-rich grains (0.5–1 μm) on the particle surface and along open cracks. Both transmission electron microscopy and synchrotron-based computed tomography combined with XRD reveal that the grains are hydrous Ca-sulfate. Notably, this phase does not form in vacuum- or nitrogen-stored particles, suggesting this result is due to laboratory weathering. We also compare the Orgueil CI chondrite with the altered Ryugu particles. Due to the weathering of pyrrhotite and dolomite, Orgueil contains a significant amount of gypsum and ferrihydrite. We suggest that mineralogical changes due to terrestrial weathering of particles returned directly from asteroid occur even after a short-time air exposure. Consequently, conducting prompt analyses and ensuring proper storage conditions are crucial, especially to preserve the primordial features of organics and volatiles.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.