Julita Krassowska, Marta Kosior-Kazberuk, Marta Słowik, Amanda Akram
{"title":"建筑业可持续发展的未来:用玄武岩小棒材加固混凝土的潜力","authors":"Julita Krassowska, Marta Kosior-Kazberuk, Marta Słowik, Amanda Akram","doi":"10.34659/eis.2024.88.1.776","DOIUrl":null,"url":null,"abstract":"The paper concerns the influence of basalt minibars on the subcritical and critical behaviour of test specimens made of concrete with low-emission cement. Low-emission cement produces lower emissions of greenhouse gases and other pollutants than traditional cement. Analyses were conducted on changes in fracture mechanics parameters depending on the content of microfibers in the concrete mix (0, 2, 4, 8 kg/m³), the type of cement used, and the water-to-cement ratio (w/c). It was demonstrated that concrete reinforced with basalt microfibers exhibits increased resistance to crack initiation and propagation. An increase in the stress intensity factor was observed for CEMI 42.5R concretes at w/c=0.5 by 27%, at w/c =0.4 by 62%, and for CEM II 42.5R/A-V concretes at w/c=0.5 by 29%, and at w/c=0.4 by as much as 30%. It was shown that the addition of microfibers to concrete made with low-emission cement significantly increases the mechanical parameters of this material.","PeriodicalId":509109,"journal":{"name":"Economics and Environment","volume":"52 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable future of construction: the potential of concrete with basalt mini-bars as reinforcement\",\"authors\":\"Julita Krassowska, Marta Kosior-Kazberuk, Marta Słowik, Amanda Akram\",\"doi\":\"10.34659/eis.2024.88.1.776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper concerns the influence of basalt minibars on the subcritical and critical behaviour of test specimens made of concrete with low-emission cement. Low-emission cement produces lower emissions of greenhouse gases and other pollutants than traditional cement. Analyses were conducted on changes in fracture mechanics parameters depending on the content of microfibers in the concrete mix (0, 2, 4, 8 kg/m³), the type of cement used, and the water-to-cement ratio (w/c). It was demonstrated that concrete reinforced with basalt microfibers exhibits increased resistance to crack initiation and propagation. An increase in the stress intensity factor was observed for CEMI 42.5R concretes at w/c=0.5 by 27%, at w/c =0.4 by 62%, and for CEM II 42.5R/A-V concretes at w/c=0.5 by 29%, and at w/c=0.4 by as much as 30%. It was shown that the addition of microfibers to concrete made with low-emission cement significantly increases the mechanical parameters of this material.\",\"PeriodicalId\":509109,\"journal\":{\"name\":\"Economics and Environment\",\"volume\":\"52 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economics and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34659/eis.2024.88.1.776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economics and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34659/eis.2024.88.1.776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sustainable future of construction: the potential of concrete with basalt mini-bars as reinforcement
The paper concerns the influence of basalt minibars on the subcritical and critical behaviour of test specimens made of concrete with low-emission cement. Low-emission cement produces lower emissions of greenhouse gases and other pollutants than traditional cement. Analyses were conducted on changes in fracture mechanics parameters depending on the content of microfibers in the concrete mix (0, 2, 4, 8 kg/m³), the type of cement used, and the water-to-cement ratio (w/c). It was demonstrated that concrete reinforced with basalt microfibers exhibits increased resistance to crack initiation and propagation. An increase in the stress intensity factor was observed for CEMI 42.5R concretes at w/c=0.5 by 27%, at w/c =0.4 by 62%, and for CEM II 42.5R/A-V concretes at w/c=0.5 by 29%, and at w/c=0.4 by as much as 30%. It was shown that the addition of microfibers to concrete made with low-emission cement significantly increases the mechanical parameters of this material.