{"title":"大功率离子束辐照下激光预处理对氯化聚氯乙烯表面纳米结构碳形成的影响","authors":"V. S. Kovivchak, S. A. Matyushenko","doi":"10.1134/S1027451024020071","DOIUrl":null,"url":null,"abstract":"<p>The features of formation of surface morphology of chlorinated polyvinyl chloride (pure and with the addition of the catalyst—ferrocene) under the influence of a high-power ion beam of nanosecond duration after the preliminary pulsed laser treatment of the polymer surface have been investigated. It was found that the morphology of the irradiated surface of chlorinated polyvinyl chloride after pulsed laser surface pretreatment differs significantly from the morphology of the irradiated surface of chlorinated polyvinyl chloride after preliminary stationary heat treatment. For pure chlorinated polyvinyl chloride, pulsed laser pretreatment with increasing power leads to an increase in the porosity of the surface layer after high-power ion beam irradiation, whereas different surface morphologies, including fibers (including polymer fibers) of different diameters, can be obtained for the pre-stationary thermal treatment of this polymer. Pre-stationary thermal pretreatment of chlorinated polyvinyl chloride with the addition of ferrocene (Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>) leads to a decrease in the diameter of the formed carbon nanofibers (with an increase in the treatment temperature). During the pulsed laser pretreatment, an increase in the porosity of the treated layer and a slight increase in the proportion of nanofibers of a larger diameter are observed. To explain the obtained differences for pulsed laser and stationary thermal pretreatment, the effect of polymer heating rate on the features of chlorinated polyvinyl chloride decomposition was analyzed.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":"18 2","pages":"322 - 326"},"PeriodicalIF":0.5000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Laser Pretreatment on the Formation of Nanostructured Carbon on the Surface of Chlorinated Polyvinyl Chloride under High-Power Ion Beam Irradiation\",\"authors\":\"V. S. Kovivchak, S. A. Matyushenko\",\"doi\":\"10.1134/S1027451024020071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The features of formation of surface morphology of chlorinated polyvinyl chloride (pure and with the addition of the catalyst—ferrocene) under the influence of a high-power ion beam of nanosecond duration after the preliminary pulsed laser treatment of the polymer surface have been investigated. It was found that the morphology of the irradiated surface of chlorinated polyvinyl chloride after pulsed laser surface pretreatment differs significantly from the morphology of the irradiated surface of chlorinated polyvinyl chloride after preliminary stationary heat treatment. For pure chlorinated polyvinyl chloride, pulsed laser pretreatment with increasing power leads to an increase in the porosity of the surface layer after high-power ion beam irradiation, whereas different surface morphologies, including fibers (including polymer fibers) of different diameters, can be obtained for the pre-stationary thermal treatment of this polymer. Pre-stationary thermal pretreatment of chlorinated polyvinyl chloride with the addition of ferrocene (Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>) leads to a decrease in the diameter of the formed carbon nanofibers (with an increase in the treatment temperature). During the pulsed laser pretreatment, an increase in the porosity of the treated layer and a slight increase in the proportion of nanofibers of a larger diameter are observed. To explain the obtained differences for pulsed laser and stationary thermal pretreatment, the effect of polymer heating rate on the features of chlorinated polyvinyl chloride decomposition was analyzed.</p>\",\"PeriodicalId\":671,\"journal\":{\"name\":\"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques\",\"volume\":\"18 2\",\"pages\":\"322 - 326\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1027451024020071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1027451024020071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Effects of Laser Pretreatment on the Formation of Nanostructured Carbon on the Surface of Chlorinated Polyvinyl Chloride under High-Power Ion Beam Irradiation
The features of formation of surface morphology of chlorinated polyvinyl chloride (pure and with the addition of the catalyst—ferrocene) under the influence of a high-power ion beam of nanosecond duration after the preliminary pulsed laser treatment of the polymer surface have been investigated. It was found that the morphology of the irradiated surface of chlorinated polyvinyl chloride after pulsed laser surface pretreatment differs significantly from the morphology of the irradiated surface of chlorinated polyvinyl chloride after preliminary stationary heat treatment. For pure chlorinated polyvinyl chloride, pulsed laser pretreatment with increasing power leads to an increase in the porosity of the surface layer after high-power ion beam irradiation, whereas different surface morphologies, including fibers (including polymer fibers) of different diameters, can be obtained for the pre-stationary thermal treatment of this polymer. Pre-stationary thermal pretreatment of chlorinated polyvinyl chloride with the addition of ferrocene (Fe(C5H5)2) leads to a decrease in the diameter of the formed carbon nanofibers (with an increase in the treatment temperature). During the pulsed laser pretreatment, an increase in the porosity of the treated layer and a slight increase in the proportion of nanofibers of a larger diameter are observed. To explain the obtained differences for pulsed laser and stationary thermal pretreatment, the effect of polymer heating rate on the features of chlorinated polyvinyl chloride decomposition was analyzed.
期刊介绍:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques publishes original articles on the topical problems of solid-state physics, materials science, experimental techniques, condensed media, nanostructures, surfaces of thin films, and phase boundaries: geometric and energetical structures of surfaces, the methods of computer simulations; physical and chemical properties and their changes upon radiation and other treatments; the methods of studies of films and surface layers of crystals (XRD, XPS, synchrotron radiation, neutron and electron diffraction, electron microscopic, scanning tunneling microscopic, atomic force microscopic studies, and other methods that provide data on the surfaces and thin films). Articles related to the methods and technics of structure studies are the focus of the journal. The journal accepts manuscripts of regular articles and reviews in English or Russian language from authors of all countries. All manuscripts are peer-reviewed.