大功率离子束辐照下激光预处理对氯化聚氯乙烯表面纳米结构碳形成的影响

IF 0.5 Q4 PHYSICS, CONDENSED MATTER
V. S. Kovivchak, S. A. Matyushenko
{"title":"大功率离子束辐照下激光预处理对氯化聚氯乙烯表面纳米结构碳形成的影响","authors":"V. S. Kovivchak,&nbsp;S. A. Matyushenko","doi":"10.1134/S1027451024020071","DOIUrl":null,"url":null,"abstract":"<p>The features of formation of surface morphology of chlorinated polyvinyl chloride (pure and with the addition of the catalyst—ferrocene) under the influence of a high-power ion beam of nanosecond duration after the preliminary pulsed laser treatment of the polymer surface have been investigated. It was found that the morphology of the irradiated surface of chlorinated polyvinyl chloride after pulsed laser surface pretreatment differs significantly from the morphology of the irradiated surface of chlorinated polyvinyl chloride after preliminary stationary heat treatment. For pure chlorinated polyvinyl chloride, pulsed laser pretreatment with increasing power leads to an increase in the porosity of the surface layer after high-power ion beam irradiation, whereas different surface morphologies, including fibers (including polymer fibers) of different diameters, can be obtained for the pre-stationary thermal treatment of this polymer. Pre-stationary thermal pretreatment of chlorinated polyvinyl chloride with the addition of ferrocene (Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>) leads to a decrease in the diameter of the formed carbon nanofibers (with an increase in the treatment temperature). During the pulsed laser pretreatment, an increase in the porosity of the treated layer and a slight increase in the proportion of nanofibers of a larger diameter are observed. To explain the obtained differences for pulsed laser and stationary thermal pretreatment, the effect of polymer heating rate on the features of chlorinated polyvinyl chloride decomposition was analyzed.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":"18 2","pages":"322 - 326"},"PeriodicalIF":0.5000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Laser Pretreatment on the Formation of Nanostructured Carbon on the Surface of Chlorinated Polyvinyl Chloride under High-Power Ion Beam Irradiation\",\"authors\":\"V. S. Kovivchak,&nbsp;S. A. Matyushenko\",\"doi\":\"10.1134/S1027451024020071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The features of formation of surface morphology of chlorinated polyvinyl chloride (pure and with the addition of the catalyst—ferrocene) under the influence of a high-power ion beam of nanosecond duration after the preliminary pulsed laser treatment of the polymer surface have been investigated. It was found that the morphology of the irradiated surface of chlorinated polyvinyl chloride after pulsed laser surface pretreatment differs significantly from the morphology of the irradiated surface of chlorinated polyvinyl chloride after preliminary stationary heat treatment. For pure chlorinated polyvinyl chloride, pulsed laser pretreatment with increasing power leads to an increase in the porosity of the surface layer after high-power ion beam irradiation, whereas different surface morphologies, including fibers (including polymer fibers) of different diameters, can be obtained for the pre-stationary thermal treatment of this polymer. Pre-stationary thermal pretreatment of chlorinated polyvinyl chloride with the addition of ferrocene (Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>) leads to a decrease in the diameter of the formed carbon nanofibers (with an increase in the treatment temperature). During the pulsed laser pretreatment, an increase in the porosity of the treated layer and a slight increase in the proportion of nanofibers of a larger diameter are observed. To explain the obtained differences for pulsed laser and stationary thermal pretreatment, the effect of polymer heating rate on the features of chlorinated polyvinyl chloride decomposition was analyzed.</p>\",\"PeriodicalId\":671,\"journal\":{\"name\":\"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques\",\"volume\":\"18 2\",\"pages\":\"322 - 326\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1027451024020071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1027451024020071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

摘要 研究了在对聚合物表面进行初步脉冲激光处理后,在纳秒级高功率离子束的影响下氯化聚氯乙烯(纯氯化聚氯乙烯和添加二茂铁催化剂的氯化聚氯乙烯)表面形貌的形成特点。研究发现,经过脉冲激光表面预处理后的氯化聚氯乙烯辐照表面的形态与经过初步静止热处理后的氯化聚氯乙烯辐照表面的形态有很大不同。对于纯氯化聚氯乙烯,脉冲激光预处理的功率越大,高功率离子束辐照后表层的孔隙率就越大,而这种聚合物经预静止热处理后可获得不同的表面形态,包括不同直径的纤维(包括聚合物纤维)。加入二茂铁(Fe(C5H5)2)对氯化聚氯乙烯进行静置前热处理,会导致形成的碳纳米纤维直径减小(随着处理温度的升高)。在脉冲激光预处理过程中,观察到处理层的孔隙率增加,直径较大的纳米纤维比例略有增加。为了解释脉冲激光预处理和固定热预处理的差异,分析了聚合物加热速率对氯化聚氯乙烯分解特征的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effects of Laser Pretreatment on the Formation of Nanostructured Carbon on the Surface of Chlorinated Polyvinyl Chloride under High-Power Ion Beam Irradiation

Effects of Laser Pretreatment on the Formation of Nanostructured Carbon on the Surface of Chlorinated Polyvinyl Chloride under High-Power Ion Beam Irradiation

Effects of Laser Pretreatment on the Formation of Nanostructured Carbon on the Surface of Chlorinated Polyvinyl Chloride under High-Power Ion Beam Irradiation

The features of formation of surface morphology of chlorinated polyvinyl chloride (pure and with the addition of the catalyst—ferrocene) under the influence of a high-power ion beam of nanosecond duration after the preliminary pulsed laser treatment of the polymer surface have been investigated. It was found that the morphology of the irradiated surface of chlorinated polyvinyl chloride after pulsed laser surface pretreatment differs significantly from the morphology of the irradiated surface of chlorinated polyvinyl chloride after preliminary stationary heat treatment. For pure chlorinated polyvinyl chloride, pulsed laser pretreatment with increasing power leads to an increase in the porosity of the surface layer after high-power ion beam irradiation, whereas different surface morphologies, including fibers (including polymer fibers) of different diameters, can be obtained for the pre-stationary thermal treatment of this polymer. Pre-stationary thermal pretreatment of chlorinated polyvinyl chloride with the addition of ferrocene (Fe(C5H5)2) leads to a decrease in the diameter of the formed carbon nanofibers (with an increase in the treatment temperature). During the pulsed laser pretreatment, an increase in the porosity of the treated layer and a slight increase in the proportion of nanofibers of a larger diameter are observed. To explain the obtained differences for pulsed laser and stationary thermal pretreatment, the effect of polymer heating rate on the features of chlorinated polyvinyl chloride decomposition was analyzed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
25.00%
发文量
144
审稿时长
3-8 weeks
期刊介绍: Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques publishes original articles on the topical problems of solid-state physics, materials science, experimental techniques, condensed media, nanostructures, surfaces of thin films, and phase boundaries: geometric and energetical structures of surfaces, the methods of computer simulations; physical and chemical properties and their changes upon radiation and other treatments; the methods of studies of films and surface layers of crystals (XRD, XPS, synchrotron radiation, neutron and electron diffraction, electron microscopic, scanning tunneling microscopic, atomic force microscopic studies, and other methods that provide data on the surfaces and thin films). Articles related to the methods and technics of structure studies are the focus of the journal. The journal accepts manuscripts of regular articles and reviews in English or Russian language from authors of all countries. All manuscripts are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信