{"title":"疟疾寄生虫的增殖:资源限制如何阻止更大毒性的进化。","authors":"Damie Pak, Tsukushi Kamiya, Megan A Greischar","doi":"10.1093/evolut/qpae057","DOIUrl":null,"url":null,"abstract":"<p><p>For parasites, robust proliferation within hosts is crucial for establishing the infection and creating opportunities for onward transmission. While faster proliferation enhances transmission rates, it is often assumed to curtail transmission duration by killing the host (virulence), a trade-off constraining parasite evolution. Yet in many diseases, including malaria, the preponderance of infections with mild or absent symptoms suggests that host mortality is not a sufficient constraint, raising the question of what restrains evolution toward faster proliferation. In malaria infections, the maximum rate of proliferation is determined by the burst size, the number of daughter parasites produced per infected red blood cell. Larger burst sizes should expand the pool of infected red blood cells that can be used to produce the specialized transmission forms needed to infect mosquitoes. We use a within-host model parameterized for rodent malaria parasites (Plasmodium chabaudi) to project the transmission consequences of burst size, focusing on initial acute infection where resource limitation and risk of host mortality are greatest. We find that resource limitation restricts evolution toward higher burst sizes below the level predicted by host mortality alone. Our results suggest resource limitation could represent a more general constraint than virulence-transmission trade-offs, preventing evolution towards faster proliferation.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":"1287-1301"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proliferation in malaria parasites: How resource limitation can prevent evolution of greater virulence.\",\"authors\":\"Damie Pak, Tsukushi Kamiya, Megan A Greischar\",\"doi\":\"10.1093/evolut/qpae057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For parasites, robust proliferation within hosts is crucial for establishing the infection and creating opportunities for onward transmission. While faster proliferation enhances transmission rates, it is often assumed to curtail transmission duration by killing the host (virulence), a trade-off constraining parasite evolution. Yet in many diseases, including malaria, the preponderance of infections with mild or absent symptoms suggests that host mortality is not a sufficient constraint, raising the question of what restrains evolution toward faster proliferation. In malaria infections, the maximum rate of proliferation is determined by the burst size, the number of daughter parasites produced per infected red blood cell. Larger burst sizes should expand the pool of infected red blood cells that can be used to produce the specialized transmission forms needed to infect mosquitoes. We use a within-host model parameterized for rodent malaria parasites (Plasmodium chabaudi) to project the transmission consequences of burst size, focusing on initial acute infection where resource limitation and risk of host mortality are greatest. We find that resource limitation restricts evolution toward higher burst sizes below the level predicted by host mortality alone. Our results suggest resource limitation could represent a more general constraint than virulence-transmission trade-offs, preventing evolution towards faster proliferation.</p>\",\"PeriodicalId\":12082,\"journal\":{\"name\":\"Evolution\",\"volume\":\" \",\"pages\":\"1287-1301\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/evolut/qpae057\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpae057","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Proliferation in malaria parasites: How resource limitation can prevent evolution of greater virulence.
For parasites, robust proliferation within hosts is crucial for establishing the infection and creating opportunities for onward transmission. While faster proliferation enhances transmission rates, it is often assumed to curtail transmission duration by killing the host (virulence), a trade-off constraining parasite evolution. Yet in many diseases, including malaria, the preponderance of infections with mild or absent symptoms suggests that host mortality is not a sufficient constraint, raising the question of what restrains evolution toward faster proliferation. In malaria infections, the maximum rate of proliferation is determined by the burst size, the number of daughter parasites produced per infected red blood cell. Larger burst sizes should expand the pool of infected red blood cells that can be used to produce the specialized transmission forms needed to infect mosquitoes. We use a within-host model parameterized for rodent malaria parasites (Plasmodium chabaudi) to project the transmission consequences of burst size, focusing on initial acute infection where resource limitation and risk of host mortality are greatest. We find that resource limitation restricts evolution toward higher burst sizes below the level predicted by host mortality alone. Our results suggest resource limitation could represent a more general constraint than virulence-transmission trade-offs, preventing evolution towards faster proliferation.
期刊介绍:
Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.