{"title":"单位圆上多重正交多项式的 Szegő 递推法","authors":"Marcus Vaktnäs, Rostyslav Kozhan","doi":"arxiv-2404.18666","DOIUrl":null,"url":null,"abstract":"We investigate polynomials that satisfy simultaneous orthogonality conditions\nwith respect to several measures on the unit circle. We generalize the direct\nand inverse Szeg\\H{o} recurrence relations, identify the analogues of the\nVerblunsky coefficients, and prove the Christoffel$\\unicode{x2013}$Darboux\nformula. These results stand directly in analogue with the nearest neighbour\nrecurrence relations from the real line counterpart.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"105 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Szegő Recurrence for Multiple Orthogonal Polynomials on the Unit Circle\",\"authors\":\"Marcus Vaktnäs, Rostyslav Kozhan\",\"doi\":\"arxiv-2404.18666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate polynomials that satisfy simultaneous orthogonality conditions\\nwith respect to several measures on the unit circle. We generalize the direct\\nand inverse Szeg\\\\H{o} recurrence relations, identify the analogues of the\\nVerblunsky coefficients, and prove the Christoffel$\\\\unicode{x2013}$Darboux\\nformula. These results stand directly in analogue with the nearest neighbour\\nrecurrence relations from the real line counterpart.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.18666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.18666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Szegő Recurrence for Multiple Orthogonal Polynomials on the Unit Circle
We investigate polynomials that satisfy simultaneous orthogonality conditions
with respect to several measures on the unit circle. We generalize the direct
and inverse Szeg\H{o} recurrence relations, identify the analogues of the
Verblunsky coefficients, and prove the Christoffel$\unicode{x2013}$Darboux
formula. These results stand directly in analogue with the nearest neighbour
recurrence relations from the real line counterpart.