单位圆上多重正交多项式的 Szegő 递推法

Marcus Vaktnäs, Rostyslav Kozhan
{"title":"单位圆上多重正交多项式的 Szegő 递推法","authors":"Marcus Vaktnäs, Rostyslav Kozhan","doi":"arxiv-2404.18666","DOIUrl":null,"url":null,"abstract":"We investigate polynomials that satisfy simultaneous orthogonality conditions\nwith respect to several measures on the unit circle. We generalize the direct\nand inverse Szeg\\H{o} recurrence relations, identify the analogues of the\nVerblunsky coefficients, and prove the Christoffel$\\unicode{x2013}$Darboux\nformula. These results stand directly in analogue with the nearest neighbour\nrecurrence relations from the real line counterpart.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"105 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Szegő Recurrence for Multiple Orthogonal Polynomials on the Unit Circle\",\"authors\":\"Marcus Vaktnäs, Rostyslav Kozhan\",\"doi\":\"arxiv-2404.18666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate polynomials that satisfy simultaneous orthogonality conditions\\nwith respect to several measures on the unit circle. We generalize the direct\\nand inverse Szeg\\\\H{o} recurrence relations, identify the analogues of the\\nVerblunsky coefficients, and prove the Christoffel$\\\\unicode{x2013}$Darboux\\nformula. These results stand directly in analogue with the nearest neighbour\\nrecurrence relations from the real line counterpart.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.18666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.18666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了与单位圆上的几个度量同时满足正交条件的多项式。我们概括了 Szeg\H{o} 的直接和逆递推关系,确定了 Verblunsky 系数的类比,并证明了 Christoffel$/unicode{x2013}$Darboux 公式。这些结果与实线对应的近邻递推关系直接对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Szegő Recurrence for Multiple Orthogonal Polynomials on the Unit Circle
We investigate polynomials that satisfy simultaneous orthogonality conditions with respect to several measures on the unit circle. We generalize the direct and inverse Szeg\H{o} recurrence relations, identify the analogues of the Verblunsky coefficients, and prove the Christoffel$\unicode{x2013}$Darboux formula. These results stand directly in analogue with the nearest neighbour recurrence relations from the real line counterpart.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信