Claudio Caccia, Joel Guerrero, Pierangelo Masarati
{"title":"使用自由多体动力学软件对拍翼进行流固耦合模拟","authors":"Claudio Caccia, Joel Guerrero, Pierangelo Masarati","doi":"10.1007/s11012-024-01798-y","DOIUrl":null,"url":null,"abstract":"<p>Computer simulations offer invaluable insights into fluid-structure interaction phenomena, increasing our understanding of complex behaviors within fluid flows and enabling predictions of consequential effects. This paper explores flapping wing simulation using an original toolchain based on free software. The structural domain is modeled using multibody dynamics, interfaced with arbitrary fluid dynamics solvers through a general-purpose multiphysics coupling library. The proposed toolchain is validated against benchmark models, demonstrating its effectiveness in various applications. Our study, inspired by experimental ones, applies this coupling to investigate the hydroelastic behavior of a flexible wing. Wing motion characteristics, structural properties, and convergence criteria are analyzed through numerical simulations. While achieving appreciable agreement with experimental data on wing motion ratios, challenges in dealing with large displacements have been identified. Nonetheless, the present study provides valuable insights into fluid-structure interactions, laying the groundwork for future refinements in computational modeling techniques and advancing the understanding of bio-inspired flight mechanisms.</p>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"3 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupled fluid-structure simulation of a flapping wing using free multibody dynamics software\",\"authors\":\"Claudio Caccia, Joel Guerrero, Pierangelo Masarati\",\"doi\":\"10.1007/s11012-024-01798-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Computer simulations offer invaluable insights into fluid-structure interaction phenomena, increasing our understanding of complex behaviors within fluid flows and enabling predictions of consequential effects. This paper explores flapping wing simulation using an original toolchain based on free software. The structural domain is modeled using multibody dynamics, interfaced with arbitrary fluid dynamics solvers through a general-purpose multiphysics coupling library. The proposed toolchain is validated against benchmark models, demonstrating its effectiveness in various applications. Our study, inspired by experimental ones, applies this coupling to investigate the hydroelastic behavior of a flexible wing. Wing motion characteristics, structural properties, and convergence criteria are analyzed through numerical simulations. While achieving appreciable agreement with experimental data on wing motion ratios, challenges in dealing with large displacements have been identified. Nonetheless, the present study provides valuable insights into fluid-structure interactions, laying the groundwork for future refinements in computational modeling techniques and advancing the understanding of bio-inspired flight mechanisms.</p>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11012-024-01798-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11012-024-01798-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Coupled fluid-structure simulation of a flapping wing using free multibody dynamics software
Computer simulations offer invaluable insights into fluid-structure interaction phenomena, increasing our understanding of complex behaviors within fluid flows and enabling predictions of consequential effects. This paper explores flapping wing simulation using an original toolchain based on free software. The structural domain is modeled using multibody dynamics, interfaced with arbitrary fluid dynamics solvers through a general-purpose multiphysics coupling library. The proposed toolchain is validated against benchmark models, demonstrating its effectiveness in various applications. Our study, inspired by experimental ones, applies this coupling to investigate the hydroelastic behavior of a flexible wing. Wing motion characteristics, structural properties, and convergence criteria are analyzed through numerical simulations. While achieving appreciable agreement with experimental data on wing motion ratios, challenges in dealing with large displacements have been identified. Nonetheless, the present study provides valuable insights into fluid-structure interactions, laying the groundwork for future refinements in computational modeling techniques and advancing the understanding of bio-inspired flight mechanisms.
期刊介绍:
Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics.
Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences.
Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.