{"title":"偏振敏感型多空芯反谐振光纤","authors":"Guillaume Raynal;Charu Goel;Seongwoo Yoo;Wonkeun Chang","doi":"10.1109/JSTQE.2024.3394851","DOIUrl":null,"url":null,"abstract":"The recent expansion of interest to use hollow-core fibers for telecommunications, nonlinear studies, and beam delivery calls for fiber-based components for all-fiberized integration. Of particular interest is the development of an inline multicore polarization beam splitter. To this end, multicore fiber designs have been investigated, but mostly in simulation studies. Reports on experimental results are scarce and their performances have been limited. In this work, we present a design and fabrication of a polarization-dependent triple hollow-core anti-resonant fiber (PD-THC-ARF). Numerical simulations predict that the fiber design allows for polarization beam splitting with a polarization extinction ratio (PER) greater than 20 dB. Experimentally, the fabricated PD-THC-ARF achieves polarization beam splitting with a PER greater than 7.8 dB. This is the first experimental demonstration of polarization beam splitting in an antiresonant hollow-core fiber. The PER can be improved by refining fabrication to achieve better uniformity of the capillary glass wall thickness. Furthermore, the fabricated fiber can serve as a polarization filter, a polarization-dependent coupler, or a spectral comb filter, with PER of up to 23 dB. The results of this study encourage the development of various hollow multicore antiresonant fiber components, such as beam combiners, mode converters, and multicore fiber amplifiers.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"30 6: Advances and Applications of Hollow-Core Fibers","pages":"1-8"},"PeriodicalIF":4.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polarization Sensitive Multi-Hollow-Core Antiresonant Fiber\",\"authors\":\"Guillaume Raynal;Charu Goel;Seongwoo Yoo;Wonkeun Chang\",\"doi\":\"10.1109/JSTQE.2024.3394851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent expansion of interest to use hollow-core fibers for telecommunications, nonlinear studies, and beam delivery calls for fiber-based components for all-fiberized integration. Of particular interest is the development of an inline multicore polarization beam splitter. To this end, multicore fiber designs have been investigated, but mostly in simulation studies. Reports on experimental results are scarce and their performances have been limited. In this work, we present a design and fabrication of a polarization-dependent triple hollow-core anti-resonant fiber (PD-THC-ARF). Numerical simulations predict that the fiber design allows for polarization beam splitting with a polarization extinction ratio (PER) greater than 20 dB. Experimentally, the fabricated PD-THC-ARF achieves polarization beam splitting with a PER greater than 7.8 dB. This is the first experimental demonstration of polarization beam splitting in an antiresonant hollow-core fiber. The PER can be improved by refining fabrication to achieve better uniformity of the capillary glass wall thickness. Furthermore, the fabricated fiber can serve as a polarization filter, a polarization-dependent coupler, or a spectral comb filter, with PER of up to 23 dB. The results of this study encourage the development of various hollow multicore antiresonant fiber components, such as beam combiners, mode converters, and multicore fiber amplifiers.\",\"PeriodicalId\":13094,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Quantum Electronics\",\"volume\":\"30 6: Advances and Applications of Hollow-Core Fibers\",\"pages\":\"1-8\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10510578/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10510578/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The recent expansion of interest to use hollow-core fibers for telecommunications, nonlinear studies, and beam delivery calls for fiber-based components for all-fiberized integration. Of particular interest is the development of an inline multicore polarization beam splitter. To this end, multicore fiber designs have been investigated, but mostly in simulation studies. Reports on experimental results are scarce and their performances have been limited. In this work, we present a design and fabrication of a polarization-dependent triple hollow-core anti-resonant fiber (PD-THC-ARF). Numerical simulations predict that the fiber design allows for polarization beam splitting with a polarization extinction ratio (PER) greater than 20 dB. Experimentally, the fabricated PD-THC-ARF achieves polarization beam splitting with a PER greater than 7.8 dB. This is the first experimental demonstration of polarization beam splitting in an antiresonant hollow-core fiber. The PER can be improved by refining fabrication to achieve better uniformity of the capillary glass wall thickness. Furthermore, the fabricated fiber can serve as a polarization filter, a polarization-dependent coupler, or a spectral comb filter, with PER of up to 23 dB. The results of this study encourage the development of various hollow multicore antiresonant fiber components, such as beam combiners, mode converters, and multicore fiber amplifiers.
期刊介绍:
Papers published in the IEEE Journal of Selected Topics in Quantum Electronics fall within the broad field of science and technology of quantum electronics of a device, subsystem, or system-oriented nature. Each issue is devoted to a specific topic within this broad spectrum. Announcements of the topical areas planned for future issues, along with deadlines for receipt of manuscripts, are published in this Journal and in the IEEE Journal of Quantum Electronics. Generally, the scope of manuscripts appropriate to this Journal is the same as that for the IEEE Journal of Quantum Electronics. Manuscripts are published that report original theoretical and/or experimental research results that advance the scientific and technological base of quantum electronics devices, systems, or applications. The Journal is dedicated toward publishing research results that advance the state of the art or add to the understanding of the generation, amplification, modulation, detection, waveguiding, or propagation characteristics of coherent electromagnetic radiation having sub-millimeter and shorter wavelengths. In order to be suitable for publication in this Journal, the content of manuscripts concerned with subject-related research must have a potential impact on advancing the technological base of quantum electronic devices, systems, and/or applications. Potential authors of subject-related research have the responsibility of pointing out this potential impact. System-oriented manuscripts must be concerned with systems that perform a function previously unavailable or that outperform previously established systems that did not use quantum electronic components or concepts. Tutorial and review papers are by invitation only.