EPSSNet

Zechun Cao, German Zavala Villafuerte, Joseph Almaznaai
{"title":"EPSSNet","authors":"Zechun Cao, German Zavala Villafuerte, Joseph Almaznaai","doi":"10.4018/ijswis.342087","DOIUrl":null,"url":null,"abstract":"Fast and accurate segmentation is important for robot judgement, e.g. robot detection, segmentation, and control. Most researchers have focused on deploying lightweight semantic segmentation models into robot services. The problem is that the critical interaction between semantic segmentation and boundaries is ignored. In this chapter, the authors propose a lightweight parallel execution model (EPSSNet) based on semantic flow branch (SFB), edge flow branch (EFB) and self-adapting weighting fusion (SAWF) for mobile robot service projects. The semantic flow branching module is used to obtain accurate object shape features. The boundary constraint module uses multiple convolution and upsampling to distinguish boundary features from semantic features. In order to adaptively fuse boundary features with semantic segmentation features, the SAWF is proposed. It adaptively fuses semantic and boundary features by learning boundary and semantic feature fusion weights. Detailed experimental results on Cityscapes, Pascal VOC 2012 and ADE20k datasets demonstrate the superior performance of our approach.","PeriodicalId":508238,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"135 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EPSSNet\",\"authors\":\"Zechun Cao, German Zavala Villafuerte, Joseph Almaznaai\",\"doi\":\"10.4018/ijswis.342087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast and accurate segmentation is important for robot judgement, e.g. robot detection, segmentation, and control. Most researchers have focused on deploying lightweight semantic segmentation models into robot services. The problem is that the critical interaction between semantic segmentation and boundaries is ignored. In this chapter, the authors propose a lightweight parallel execution model (EPSSNet) based on semantic flow branch (SFB), edge flow branch (EFB) and self-adapting weighting fusion (SAWF) for mobile robot service projects. The semantic flow branching module is used to obtain accurate object shape features. The boundary constraint module uses multiple convolution and upsampling to distinguish boundary features from semantic features. In order to adaptively fuse boundary features with semantic segmentation features, the SAWF is proposed. It adaptively fuses semantic and boundary features by learning boundary and semantic feature fusion weights. Detailed experimental results on Cityscapes, Pascal VOC 2012 and ADE20k datasets demonstrate the superior performance of our approach.\",\"PeriodicalId\":508238,\"journal\":{\"name\":\"International Journal on Semantic Web and Information Systems\",\"volume\":\"135 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Semantic Web and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijswis.342087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijswis.342087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

快速准确的分割对于机器人的判断(如机器人检测、分割和控制)非常重要。大多数研究人员都专注于将轻量级语义分割模型部署到机器人服务中。问题在于,语义分割与边界之间的关键互动被忽视了。在本章中,作者针对移动机器人服务项目提出了一种基于语义流分支(SFB)、边缘流分支(EFB)和自适应加权融合(SAWF)的轻量级并行执行模型(EPSSNet)。语义流分支模块用于获取精确的物体形状特征。边界约束模块使用多重卷积和上采样来区分边界特征和语义特征。为了自适应地融合边界特征和语义分割特征,提出了 SAWF。它通过学习边界和语义特征融合权重,自适应地融合语义和边界特征。在 Cityscapes、Pascal VOC 2012 和 ADE20k 数据集上的详细实验结果表明,我们的方法性能优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EPSSNet
Fast and accurate segmentation is important for robot judgement, e.g. robot detection, segmentation, and control. Most researchers have focused on deploying lightweight semantic segmentation models into robot services. The problem is that the critical interaction between semantic segmentation and boundaries is ignored. In this chapter, the authors propose a lightweight parallel execution model (EPSSNet) based on semantic flow branch (SFB), edge flow branch (EFB) and self-adapting weighting fusion (SAWF) for mobile robot service projects. The semantic flow branching module is used to obtain accurate object shape features. The boundary constraint module uses multiple convolution and upsampling to distinguish boundary features from semantic features. In order to adaptively fuse boundary features with semantic segmentation features, the SAWF is proposed. It adaptively fuses semantic and boundary features by learning boundary and semantic feature fusion weights. Detailed experimental results on Cityscapes, Pascal VOC 2012 and ADE20k datasets demonstrate the superior performance of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信