{"title":"用于肿瘤诊断和治疗的新型微型/纳米马达:运动机制、优势和应用","authors":"Yangbo Zhu , Haiqin Huang , Qingwei Zhao , Jiayi Qin","doi":"10.1016/j.jsamd.2024.100718","DOIUrl":null,"url":null,"abstract":"<div><p>The lack of effective diagnostic and therapeutic techniques is a crucial cause of the high clinical mortality for malignancy. Notably, self-propelled micro/nanomotors are expected to address the drawbacks of conventional nanoparticles in tumor diagnosis and therapy. The special locomotion property ensures the high efficiency of micro/nanomotors in term of rapid distribution, deep penetration, and targeted delivery. Hence, in this review, the motion mechanism and the controllability of speed and direction of the micro/nanomotors were described, as well as the advantages regarding the enhancement of biological barrier crossing (overcoming blood flow obstacles, tumor microenvironment barriers), targeting delivery and deep penetration in the tumor. The most recent advances in micro/nanomotor contributions were comprehensively summarized to various medical imaging technologies, biosensing techniques, and therapeutic approaches, especially for the combination therapy and integration of diagnosis and treatment based on multifunctional micro/nanomotors. Furthermore, challenges for developing practical micro/nanomotors were discussed along with future directions from the clinicians' perspective, which is promised to speed up the clinical translation process and contribute to efficient tumor diagnosis and therapy.</p></div>","PeriodicalId":17219,"journal":{"name":"Journal of Science: Advanced Materials and Devices","volume":"9 2","pages":"Article 100718"},"PeriodicalIF":6.7000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468217924000492/pdfft?md5=339f3d94929181f9feda72d541c64309&pid=1-s2.0-S2468217924000492-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel micro/nanomotors for tumor diagnosis and therapy: Motion mechanisms, advantages and applications\",\"authors\":\"Yangbo Zhu , Haiqin Huang , Qingwei Zhao , Jiayi Qin\",\"doi\":\"10.1016/j.jsamd.2024.100718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The lack of effective diagnostic and therapeutic techniques is a crucial cause of the high clinical mortality for malignancy. Notably, self-propelled micro/nanomotors are expected to address the drawbacks of conventional nanoparticles in tumor diagnosis and therapy. The special locomotion property ensures the high efficiency of micro/nanomotors in term of rapid distribution, deep penetration, and targeted delivery. Hence, in this review, the motion mechanism and the controllability of speed and direction of the micro/nanomotors were described, as well as the advantages regarding the enhancement of biological barrier crossing (overcoming blood flow obstacles, tumor microenvironment barriers), targeting delivery and deep penetration in the tumor. The most recent advances in micro/nanomotor contributions were comprehensively summarized to various medical imaging technologies, biosensing techniques, and therapeutic approaches, especially for the combination therapy and integration of diagnosis and treatment based on multifunctional micro/nanomotors. Furthermore, challenges for developing practical micro/nanomotors were discussed along with future directions from the clinicians' perspective, which is promised to speed up the clinical translation process and contribute to efficient tumor diagnosis and therapy.</p></div>\",\"PeriodicalId\":17219,\"journal\":{\"name\":\"Journal of Science: Advanced Materials and Devices\",\"volume\":\"9 2\",\"pages\":\"Article 100718\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468217924000492/pdfft?md5=339f3d94929181f9feda72d541c64309&pid=1-s2.0-S2468217924000492-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Science: Advanced Materials and Devices\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468217924000492\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science: Advanced Materials and Devices","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468217924000492","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Novel micro/nanomotors for tumor diagnosis and therapy: Motion mechanisms, advantages and applications
The lack of effective diagnostic and therapeutic techniques is a crucial cause of the high clinical mortality for malignancy. Notably, self-propelled micro/nanomotors are expected to address the drawbacks of conventional nanoparticles in tumor diagnosis and therapy. The special locomotion property ensures the high efficiency of micro/nanomotors in term of rapid distribution, deep penetration, and targeted delivery. Hence, in this review, the motion mechanism and the controllability of speed and direction of the micro/nanomotors were described, as well as the advantages regarding the enhancement of biological barrier crossing (overcoming blood flow obstacles, tumor microenvironment barriers), targeting delivery and deep penetration in the tumor. The most recent advances in micro/nanomotor contributions were comprehensively summarized to various medical imaging technologies, biosensing techniques, and therapeutic approaches, especially for the combination therapy and integration of diagnosis and treatment based on multifunctional micro/nanomotors. Furthermore, challenges for developing practical micro/nanomotors were discussed along with future directions from the clinicians' perspective, which is promised to speed up the clinical translation process and contribute to efficient tumor diagnosis and therapy.
期刊介绍:
In 1985, the Journal of Science was founded as a platform for publishing national and international research papers across various disciplines, including natural sciences, technology, social sciences, and humanities. Over the years, the journal has experienced remarkable growth in terms of quality, size, and scope. Today, it encompasses a diverse range of publications dedicated to academic research.
Considering the rapid expansion of materials science, we are pleased to introduce the Journal of Science: Advanced Materials and Devices. This new addition to our journal series offers researchers an exciting opportunity to publish their work on all aspects of materials science and technology within the esteemed Journal of Science.
With this development, we aim to revolutionize the way research in materials science is expressed and organized, further strengthening our commitment to promoting outstanding research across various scientific and technological fields.