Heegaard Floer 同调与嵌入接触同调的等价性 III:从帽子到加号

Vincent Colin, Paolo Ghiggini, Ko Honda
{"title":"Heegaard Floer 同调与嵌入接触同调的等价性 III:从帽子到加号","authors":"Vincent Colin, Paolo Ghiggini, Ko Honda","doi":"10.1007/s10240-024-00147-9","DOIUrl":null,"url":null,"abstract":"<p>Given a closed oriented 3-manifold <span>\\(M\\)</span>, we establish an isomorphism between the Heegaard Floer homology group <span>\\(HF^{+} (-M)\\)</span> and the embedded contact homology group <span>\\(ECH(M)\\)</span>. Starting from an open book decomposition <span>\\((S,\\mathfrak{h} )\\)</span> of <span>\\(M\\)</span>, we construct a chain map <span>\\(\\Phi ^{+}\\)</span> from a Heegaard Floer chain complex associated to <span>\\((S,\\mathfrak{h} )\\)</span> to an embedded contact homology chain complex for a contact form supported by <span>\\((S,\\mathfrak{h} )\\)</span>. The chain map <span>\\(\\Phi ^{+}\\)</span> commutes up to homotopy with the <span>\\(U\\)</span>-maps defined on both sides and reduces to the quasi-isomorphism <span>\\(\\Phi \\)</span> from (Colin et al. in Publ. Math. Inst. Hautes Études Sci., 2024a, 2024b) on subcomplexes defining the hat versions. Algebraic considerations then imply that the map <span>\\(\\Phi ^{+}\\)</span> is a quasi-isomorphism.</p>","PeriodicalId":516319,"journal":{"name":"Publications mathématiques de l'IHÉS","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The equivalence of Heegaard Floer homology and embedded contact homology III: from hat to plus\",\"authors\":\"Vincent Colin, Paolo Ghiggini, Ko Honda\",\"doi\":\"10.1007/s10240-024-00147-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a closed oriented 3-manifold <span>\\\\(M\\\\)</span>, we establish an isomorphism between the Heegaard Floer homology group <span>\\\\(HF^{+} (-M)\\\\)</span> and the embedded contact homology group <span>\\\\(ECH(M)\\\\)</span>. Starting from an open book decomposition <span>\\\\((S,\\\\mathfrak{h} )\\\\)</span> of <span>\\\\(M\\\\)</span>, we construct a chain map <span>\\\\(\\\\Phi ^{+}\\\\)</span> from a Heegaard Floer chain complex associated to <span>\\\\((S,\\\\mathfrak{h} )\\\\)</span> to an embedded contact homology chain complex for a contact form supported by <span>\\\\((S,\\\\mathfrak{h} )\\\\)</span>. The chain map <span>\\\\(\\\\Phi ^{+}\\\\)</span> commutes up to homotopy with the <span>\\\\(U\\\\)</span>-maps defined on both sides and reduces to the quasi-isomorphism <span>\\\\(\\\\Phi \\\\)</span> from (Colin et al. in Publ. Math. Inst. Hautes Études Sci., 2024a, 2024b) on subcomplexes defining the hat versions. Algebraic considerations then imply that the map <span>\\\\(\\\\Phi ^{+}\\\\)</span> is a quasi-isomorphism.</p>\",\"PeriodicalId\":516319,\"journal\":{\"name\":\"Publications mathématiques de l'IHÉS\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications mathématiques de l'IHÉS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10240-024-00147-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications mathématiques de l'IHÉS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10240-024-00147-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个封闭的面向 3-manifold(M),我们在 Heegaard Floer 同调群 (HF^{+} (-M)\) 和嵌入接触同调群 (ECH(M)\) 之间建立了同构关系。从\(M)的开卷分解 \((S,\mathfrak{h} )\) 开始,我们构建了一个链图 \(\Phi ^{+}\),从与\((S,\mathfrak{h})\)相关联的 Heegaard Floer 链复数到由\((S,\mathfrak{h})\)支持的接触形式的内嵌接触同源链复数。链映射 \(\Phi ^{+}\) 与定义在两边的 \(U\)- 映射同调,并还原为定义帽子版本的子复数上的(科林等人,发表于《高等数学研究所》,2024a, 2024b)准同构 \(\Phi\)。代数学的考虑意味着映射 \(\Phi ^{+}\)是一个准同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The equivalence of Heegaard Floer homology and embedded contact homology III: from hat to plus

Given a closed oriented 3-manifold \(M\), we establish an isomorphism between the Heegaard Floer homology group \(HF^{+} (-M)\) and the embedded contact homology group \(ECH(M)\). Starting from an open book decomposition \((S,\mathfrak{h} )\) of \(M\), we construct a chain map \(\Phi ^{+}\) from a Heegaard Floer chain complex associated to \((S,\mathfrak{h} )\) to an embedded contact homology chain complex for a contact form supported by \((S,\mathfrak{h} )\). The chain map \(\Phi ^{+}\) commutes up to homotopy with the \(U\)-maps defined on both sides and reduces to the quasi-isomorphism \(\Phi \) from (Colin et al. in Publ. Math. Inst. Hautes Études Sci., 2024a, 2024b) on subcomplexes defining the hat versions. Algebraic considerations then imply that the map \(\Phi ^{+}\) is a quasi-isomorphism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信