基于系统范德蒙德矩阵构建四奇偶校验的里德-所罗门纠错码

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Leilei Yu;Yunghsiang S. Han
{"title":"基于系统范德蒙德矩阵构建四奇偶校验的里德-所罗门纠错码","authors":"Leilei Yu;Yunghsiang S. Han","doi":"10.1109/TC.2024.3387069","DOIUrl":null,"url":null,"abstract":"In 2021, Tang et al. proposed an improved construction of Reed-Solomon (RS) erasure codes with four parity symbols to accelerate the computation of Reed-Muller (RM) transform-based RS algorithm. The idea is to change the original Vandermonde parity-check matrix into a systematic Vandermonde parity-check matrix. However, the construction relies on a computer search and requires that the size of the information vector of RS codes does not exceed \n<inline-formula><tex-math>$52$</tex-math></inline-formula>\n. This paper improves its idea and proposes a purely algebraic construction. The proposed method has a more explicit construction, a wider range of codeword lengths, and competitive encoding/erasure decoding computational complexity.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"73 7","pages":"1875-1882"},"PeriodicalIF":3.6000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of Reed-Solomon Erasure Codes With Four Parities Based on Systematic Vandermonde Matrices\",\"authors\":\"Leilei Yu;Yunghsiang S. Han\",\"doi\":\"10.1109/TC.2024.3387069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2021, Tang et al. proposed an improved construction of Reed-Solomon (RS) erasure codes with four parity symbols to accelerate the computation of Reed-Muller (RM) transform-based RS algorithm. The idea is to change the original Vandermonde parity-check matrix into a systematic Vandermonde parity-check matrix. However, the construction relies on a computer search and requires that the size of the information vector of RS codes does not exceed \\n<inline-formula><tex-math>$52$</tex-math></inline-formula>\\n. This paper improves its idea and proposes a purely algebraic construction. The proposed method has a more explicit construction, a wider range of codeword lengths, and competitive encoding/erasure decoding computational complexity.\",\"PeriodicalId\":13087,\"journal\":{\"name\":\"IEEE Transactions on Computers\",\"volume\":\"73 7\",\"pages\":\"1875-1882\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10496475/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10496475/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

2021 年,Tang 等人提出了一种具有四个奇偶校验符号的里德-所罗门(RS)擦除码的改进结构,以加速基于里德-穆勒(RM)变换的 RS 算法的计算。其思路是将原始范德蒙德奇偶校验矩阵变为系统范德蒙德奇偶校验矩阵。然而,这种构造依赖于计算机搜索,并要求 RS 码的信息向量大小不超过 52 美元。本文改进了其想法,提出了一种纯代数的构造。所提出的方法具有更明确的构造、更宽的码字长度范围和有竞争力的编码/测度解码计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of Reed-Solomon Erasure Codes With Four Parities Based on Systematic Vandermonde Matrices
In 2021, Tang et al. proposed an improved construction of Reed-Solomon (RS) erasure codes with four parity symbols to accelerate the computation of Reed-Muller (RM) transform-based RS algorithm. The idea is to change the original Vandermonde parity-check matrix into a systematic Vandermonde parity-check matrix. However, the construction relies on a computer search and requires that the size of the information vector of RS codes does not exceed $52$ . This paper improves its idea and proposes a purely algebraic construction. The proposed method has a more explicit construction, a wider range of codeword lengths, and competitive encoding/erasure decoding computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信