具有异构不确定性信息的分布式稳健优化调度:氢气系统框架

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS
Anping Zhou;Mohammad E. Khodayar;Jianhui Wang
{"title":"具有异构不确定性信息的分布式稳健优化调度:氢气系统框架","authors":"Anping Zhou;Mohammad E. Khodayar;Jianhui Wang","doi":"10.1109/TSTE.2024.3388388","DOIUrl":null,"url":null,"abstract":"Distributionally robust optimization (DRO) has emerged as a favored methodology for addressing the uncertainties stemming from renewable energy sources. However, existing DRO frameworks primarily focus on single types of uncertainty characteristics, such as moments. Exploring novel ambiguity sets that encompass heterogeneous uncertainty information to mitigate decision conservatism is thus an essential and strategic move. This paper introduces a day-ahead optimal scheduling model tailored for electricity-hydrogen systems under renewable uncertainty, with embedded technologies of hydrogen production, storage, and utilization. Three novel ambiguity sets enriched with the moment, Wasserstein distance, and unimodality information are adeptly devised. Building upon these elaborated ambiguity sets, we develop efficient and scalable reformulations of the expected objective function and uncertain constraints, leading to either a tractable mixed-integer second-order cone programming problem or a linear programming problem. We validate the effectiveness and operating flexibility of the proposed electricity-hydrogen model using both a 6-bus test system and the IEEE 118-bus test system. Furthermore, we demonstrate the superior cost performance and computational efficiency of our developed DRO approaches.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 3","pages":"1933-1945"},"PeriodicalIF":8.6000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributionally Robust Optimal Scheduling With Heterogeneous Uncertainty Information: A Framework for Hydrogen Systems\",\"authors\":\"Anping Zhou;Mohammad E. Khodayar;Jianhui Wang\",\"doi\":\"10.1109/TSTE.2024.3388388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributionally robust optimization (DRO) has emerged as a favored methodology for addressing the uncertainties stemming from renewable energy sources. However, existing DRO frameworks primarily focus on single types of uncertainty characteristics, such as moments. Exploring novel ambiguity sets that encompass heterogeneous uncertainty information to mitigate decision conservatism is thus an essential and strategic move. This paper introduces a day-ahead optimal scheduling model tailored for electricity-hydrogen systems under renewable uncertainty, with embedded technologies of hydrogen production, storage, and utilization. Three novel ambiguity sets enriched with the moment, Wasserstein distance, and unimodality information are adeptly devised. Building upon these elaborated ambiguity sets, we develop efficient and scalable reformulations of the expected objective function and uncertain constraints, leading to either a tractable mixed-integer second-order cone programming problem or a linear programming problem. We validate the effectiveness and operating flexibility of the proposed electricity-hydrogen model using both a 6-bus test system and the IEEE 118-bus test system. Furthermore, we demonstrate the superior cost performance and computational efficiency of our developed DRO approaches.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"15 3\",\"pages\":\"1933-1945\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10499851/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10499851/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

分布式稳健优化(DRO)已成为解决可再生能源不确定性问题的首选方法。然而,现有的分布稳健优化框架主要关注单一类型的不确定性特征,如矩。因此,探索包含各种不确定性信息的新型模糊集以减轻决策保守性是一项重要的战略举措。本文介绍了一个为可再生不确定性条件下的电力-氢气系统量身定制的日前优化调度模型,其中包含氢气生产、存储和利用的嵌入式技术。本文巧妙地设计了三个新颖的模糊集,分别包含时刻、瓦瑟斯坦距离和单模态信息。在这些精心设计的模糊集的基础上,我们对预期目标函数和不确定约束条件进行了高效、可扩展的重新表述,从而形成了一个可处理的混合整数二阶锥形编程问题或线性编程问题。我们使用 6 总线测试系统和 IEEE 118 总线测试系统验证了所提出的电-氢模型的有效性和操作灵活性。此外,我们还展示了所开发的 DRO 方法的卓越性价比和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributionally Robust Optimal Scheduling With Heterogeneous Uncertainty Information: A Framework for Hydrogen Systems
Distributionally robust optimization (DRO) has emerged as a favored methodology for addressing the uncertainties stemming from renewable energy sources. However, existing DRO frameworks primarily focus on single types of uncertainty characteristics, such as moments. Exploring novel ambiguity sets that encompass heterogeneous uncertainty information to mitigate decision conservatism is thus an essential and strategic move. This paper introduces a day-ahead optimal scheduling model tailored for electricity-hydrogen systems under renewable uncertainty, with embedded technologies of hydrogen production, storage, and utilization. Three novel ambiguity sets enriched with the moment, Wasserstein distance, and unimodality information are adeptly devised. Building upon these elaborated ambiguity sets, we develop efficient and scalable reformulations of the expected objective function and uncertain constraints, leading to either a tractable mixed-integer second-order cone programming problem or a linear programming problem. We validate the effectiveness and operating flexibility of the proposed electricity-hydrogen model using both a 6-bus test system and the IEEE 118-bus test system. Furthermore, we demonstrate the superior cost performance and computational efficiency of our developed DRO approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信