有限域上矩阵环的井盖单元 Cayley 图及其应用

IF 1.2 3区 数学 Q1 MATHEMATICS
Shahin Rahimi, Ashkan Nikseresht
{"title":"有限域上矩阵环的井盖单元 Cayley 图及其应用","authors":"Shahin Rahimi,&nbsp;Ashkan Nikseresht","doi":"10.1016/j.ffa.2024.102428","DOIUrl":null,"url":null,"abstract":"<div><p>Suppose that <em>F</em> is a finite field and <span><math><mi>R</mi><mo>=</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> is the ring of <em>n</em>-square matrices over <em>F</em>. Here we characterize when the Cayley graph of the additive group of <em>R</em> with respect to the set of invertible elements of <em>R</em>, called the unitary Cayley graph of <em>R</em>, is well-covered. Then we apply this to characterize all finite rings with identity whose unitary Cayley graph is well-covered or Cohen-Macaulay.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"96 ","pages":"Article 102428"},"PeriodicalIF":1.2000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-covered unitary Cayley graphs of matrix rings over finite fields and applications\",\"authors\":\"Shahin Rahimi,&nbsp;Ashkan Nikseresht\",\"doi\":\"10.1016/j.ffa.2024.102428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Suppose that <em>F</em> is a finite field and <span><math><mi>R</mi><mo>=</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>F</mi><mo>)</mo></math></span> is the ring of <em>n</em>-square matrices over <em>F</em>. Here we characterize when the Cayley graph of the additive group of <em>R</em> with respect to the set of invertible elements of <em>R</em>, called the unitary Cayley graph of <em>R</em>, is well-covered. Then we apply this to characterize all finite rings with identity whose unitary Cayley graph is well-covered or Cohen-Macaulay.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"96 \",\"pages\":\"Article 102428\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724000674\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724000674","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

假设 F 是有限域,R=Mn(F) 是 F 上的 n 方矩阵环。在此,我们将描述 R 的加法群关于 R 的可逆元素集的 Cayley 图(称为 R 的单元 Cayley 图)何时被很好地覆盖。然后,我们将其应用于表征所有具有同一性的有限环,这些有限环的单元 Cayley 图都是井盖图或 Cohen-Macaulay 图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-covered unitary Cayley graphs of matrix rings over finite fields and applications

Suppose that F is a finite field and R=Mn(F) is the ring of n-square matrices over F. Here we characterize when the Cayley graph of the additive group of R with respect to the set of invertible elements of R, called the unitary Cayley graph of R, is well-covered. Then we apply this to characterize all finite rings with identity whose unitary Cayley graph is well-covered or Cohen-Macaulay.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信