Gallatin:通用 GPU 内存管理器

Hunter McCoy, Prashant Pandey
{"title":"Gallatin:通用 GPU 内存管理器","authors":"Hunter McCoy, Prashant Pandey","doi":"10.1145/3627535.3638499","DOIUrl":null,"url":null,"abstract":"Dynamic memory management is critical for efficiently porting modern data processing pipelines to GPUs. However, building a general-purpose dynamic memory manager on GPUs is challenging due to the massive parallelism and weak memory coherence. Existing state-of-the-art GPU memory managers, Ouroboros and Reg-Eff, employ traditional data structures such as arrays and linked lists to manage memory objects. They build specialized pipelines to achieve performance for a fixed set of allocation sizes and fall back to the CUDA allocator for allocating large sizes. In the process, they lose general-purpose usability and fail to support critical applications such as streaming graph processing. In this paper, we introduce Gallatin, a general-purpose and high-performance GPU memory manager. Gallatin uses the van Emde Boas (vEB) tree data structure to manage memory objects efficiently and supports allocations of any size. Furthermore,wedevelopahighly-concurrentGPUimplemen-tationofthevEBtreewhichcanbebroadlyusedinotherGPU applications.Itsupportsconstanttimeinsertions,deletions, andsuccessoroperationsforagivenmemorysize. Inourevaluation,wecompareGallatinwithstate-of-the-artspecializedallocatorvariants.Gallatinisupto374 × faster onsingle-sizedallocationsandupto264 × fasteronmixed-size allocations than the next-best allocator. In scalability benchmarks, Gallatin is up to 254 × times faster than the next-best allocator as the number of threads increases. For the graph benchmarks, Gallatin is 1 . 5 × faster than the state-of-the-art for bulk insertions, slightly faster for bulk deletions, and is 3 × faster than the next-best allocator for all graph expansion tests.","PeriodicalId":286119,"journal":{"name":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","volume":"329 ","pages":"364-376"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gallatin: A General-Purpose GPU Memory Manager\",\"authors\":\"Hunter McCoy, Prashant Pandey\",\"doi\":\"10.1145/3627535.3638499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic memory management is critical for efficiently porting modern data processing pipelines to GPUs. However, building a general-purpose dynamic memory manager on GPUs is challenging due to the massive parallelism and weak memory coherence. Existing state-of-the-art GPU memory managers, Ouroboros and Reg-Eff, employ traditional data structures such as arrays and linked lists to manage memory objects. They build specialized pipelines to achieve performance for a fixed set of allocation sizes and fall back to the CUDA allocator for allocating large sizes. In the process, they lose general-purpose usability and fail to support critical applications such as streaming graph processing. In this paper, we introduce Gallatin, a general-purpose and high-performance GPU memory manager. Gallatin uses the van Emde Boas (vEB) tree data structure to manage memory objects efficiently and supports allocations of any size. Furthermore,wedevelopahighly-concurrentGPUimplemen-tationofthevEBtreewhichcanbebroadlyusedinotherGPU applications.Itsupportsconstanttimeinsertions,deletions, andsuccessoroperationsforagivenmemorysize. Inourevaluation,wecompareGallatinwithstate-of-the-artspecializedallocatorvariants.Gallatinisupto374 × faster onsingle-sizedallocationsandupto264 × fasteronmixed-size allocations than the next-best allocator. In scalability benchmarks, Gallatin is up to 254 × times faster than the next-best allocator as the number of threads increases. For the graph benchmarks, Gallatin is 1 . 5 × faster than the state-of-the-art for bulk insertions, slightly faster for bulk deletions, and is 3 × faster than the next-best allocator for all graph expansion tests.\",\"PeriodicalId\":286119,\"journal\":{\"name\":\"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming\",\"volume\":\"329 \",\"pages\":\"364-376\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3627535.3638499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3627535.3638499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动态内存管理对于将现代数据处理流水线高效移植到 GPU 至关重要。然而,在 GPU 上构建通用的动态内存管理器具有很大的挑战性,因为 GPU 具有巨大的并行性和较弱的内存一致性。现有的最先进的 GPU 内存管理器 Ouroboros 和 Reg-Eff 采用数组和链表等传统数据结构来管理内存对象。它们建立了专门的流水线,以实现固定分配大小的性能,并在分配大容量时退回到 CUDA 分配器。在这一过程中,它们失去了通用可用性,无法支持流图处理等关键应用。在本文中,我们将介绍通用型高性能 GPU 内存管理器 Gallatin。Gallatin 使用 van Emde Boas(vEB)树形数据结构来高效管理内存对象,并支持任意大小的分配。此外,我们还开发了高度并发的 vEB 树 GPU 实现,可广泛应用于其他 GPU 应用中。在评估中,我们将 Gallatin 与目前最先进的专用分配器变体进行了比较。与次好的分配器相比,Gallatin 在单一大小分配上的速度快达 374 倍,在混合大小分配上的速度快达 264 倍。在可扩展性基准测试中,随着线程数量的增加,Gallatin 的速度是次优分配器的 254 倍。在图形基准测试中,Gallatin 比最先进的批量分配器快 1 .在批量插入测试中,Gallatin 的速度比最先进的分配器快 1.5 倍;在批量删除测试中,Gallatin 的速度略快于最先进的分配器;在所有图形扩展测试中,Gallatin 的速度比次优分配器快 3 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gallatin: A General-Purpose GPU Memory Manager
Dynamic memory management is critical for efficiently porting modern data processing pipelines to GPUs. However, building a general-purpose dynamic memory manager on GPUs is challenging due to the massive parallelism and weak memory coherence. Existing state-of-the-art GPU memory managers, Ouroboros and Reg-Eff, employ traditional data structures such as arrays and linked lists to manage memory objects. They build specialized pipelines to achieve performance for a fixed set of allocation sizes and fall back to the CUDA allocator for allocating large sizes. In the process, they lose general-purpose usability and fail to support critical applications such as streaming graph processing. In this paper, we introduce Gallatin, a general-purpose and high-performance GPU memory manager. Gallatin uses the van Emde Boas (vEB) tree data structure to manage memory objects efficiently and supports allocations of any size. Furthermore,wedevelopahighly-concurrentGPUimplemen-tationofthevEBtreewhichcanbebroadlyusedinotherGPU applications.Itsupportsconstanttimeinsertions,deletions, andsuccessoroperationsforagivenmemorysize. Inourevaluation,wecompareGallatinwithstate-of-the-artspecializedallocatorvariants.Gallatinisupto374 × faster onsingle-sizedallocationsandupto264 × fasteronmixed-size allocations than the next-best allocator. In scalability benchmarks, Gallatin is up to 254 × times faster than the next-best allocator as the number of threads increases. For the graph benchmarks, Gallatin is 1 . 5 × faster than the state-of-the-art for bulk insertions, slightly faster for bulk deletions, and is 3 × faster than the next-best allocator for all graph expansion tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信