Xiao Qi, Lingyao Lei, Changhui Yu, Zekai Ma, Taotao Qu, Ming Du, Miaosong Gu
{"title":"基于分布式 MPC 的自适应负载频率控制与海上风电场的动态虚拟惯性","authors":"Xiao Qi, Lingyao Lei, Changhui Yu, Zekai Ma, Taotao Qu, Ming Du, Miaosong Gu","doi":"10.1049/cth2.12639","DOIUrl":null,"url":null,"abstract":"<p>The penetration of offshore wind farms (OWFs) in city-close power systems is rapidly increasing. System inertia will be further reduced. Active frequency support of wind power is essential to solve the load frequency control (LFC) problem. Here, the dynamic virtual inertia control (VIC) method is employed to enhance frequency stability within the permitted operating states of OWFs. An adaptive distributed model predictive control (DMPC) method is proposed and applied to an interconnected power system. The dynamic VIC-based LFC model is derived and used to construct the predictive model of DMPC. To expand the adaptation of the analytical linearized model of OWFs in different operating points, the adaptive law is further designed to dynamically adjust the parameters of DMPC. The simulation results demonstrate the effectiveness of the proposed control method. The frequency fluctuations can be well-restrained under different disturbances.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"18 17","pages":"2228-2238"},"PeriodicalIF":2.2000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12639","citationCount":"0","resultStr":"{\"title\":\"Adaptive distributed MPC based load frequency control with dynamic virtual inertia of offshore wind farms\",\"authors\":\"Xiao Qi, Lingyao Lei, Changhui Yu, Zekai Ma, Taotao Qu, Ming Du, Miaosong Gu\",\"doi\":\"10.1049/cth2.12639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The penetration of offshore wind farms (OWFs) in city-close power systems is rapidly increasing. System inertia will be further reduced. Active frequency support of wind power is essential to solve the load frequency control (LFC) problem. Here, the dynamic virtual inertia control (VIC) method is employed to enhance frequency stability within the permitted operating states of OWFs. An adaptive distributed model predictive control (DMPC) method is proposed and applied to an interconnected power system. The dynamic VIC-based LFC model is derived and used to construct the predictive model of DMPC. To expand the adaptation of the analytical linearized model of OWFs in different operating points, the adaptive law is further designed to dynamically adjust the parameters of DMPC. The simulation results demonstrate the effectiveness of the proposed control method. The frequency fluctuations can be well-restrained under different disturbances.</p>\",\"PeriodicalId\":50382,\"journal\":{\"name\":\"IET Control Theory and Applications\",\"volume\":\"18 17\",\"pages\":\"2228-2238\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12639\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Control Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12639\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12639","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Adaptive distributed MPC based load frequency control with dynamic virtual inertia of offshore wind farms
The penetration of offshore wind farms (OWFs) in city-close power systems is rapidly increasing. System inertia will be further reduced. Active frequency support of wind power is essential to solve the load frequency control (LFC) problem. Here, the dynamic virtual inertia control (VIC) method is employed to enhance frequency stability within the permitted operating states of OWFs. An adaptive distributed model predictive control (DMPC) method is proposed and applied to an interconnected power system. The dynamic VIC-based LFC model is derived and used to construct the predictive model of DMPC. To expand the adaptation of the analytical linearized model of OWFs in different operating points, the adaptive law is further designed to dynamically adjust the parameters of DMPC. The simulation results demonstrate the effectiveness of the proposed control method. The frequency fluctuations can be well-restrained under different disturbances.
期刊介绍:
IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces.
Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed.
Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.