应对逻辑回归模型多重共线性的新估算器

Prof. Dr. Monira Ahmed Hussein, Mostafa Kamal Abd El-Rahman
{"title":"应对逻辑回归模型多重共线性的新估算器","authors":"Prof. Dr. Monira Ahmed Hussein, Mostafa Kamal Abd El-Rahman","doi":"10.21608/masf.2023.205072.1042","DOIUrl":null,"url":null,"abstract":"This paper proposes a new estimator based on the singular value decomposition technique of the design matrix to remedy multicollinearity in the binary logistic model. The proposed estimator is called the SVD-based maximum likelihood logistic estimator. The theoretical properties of this estimator and its superiority over some existing estimators is derived in the sense of the matrix mean squared error criterion. The choice of scalar parameter for this estimator is discussed. A Monte Carlo simulation study has been conducted to compare the performance of the proposed estimator with the existing maximum likelihood estimator and ridge logistic estimator in terms of the mean squared error criterion. Moreover, a real data application is presented to illustrate the potential benefits of the proposed estimator and satisfy the theoretical findings. The results from the simulation study and the empirical application reveal that the proposed estimator works well and outperforms existing estimators in scalar mean squared error sense.","PeriodicalId":510566,"journal":{"name":"المجلة العلمية للدراسات والبحوث المالية والإدارية‎","volume":"76 s1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Estimator to Combat Multicollinearity in Logistic Regression Model\",\"authors\":\"Prof. Dr. Monira Ahmed Hussein, Mostafa Kamal Abd El-Rahman\",\"doi\":\"10.21608/masf.2023.205072.1042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new estimator based on the singular value decomposition technique of the design matrix to remedy multicollinearity in the binary logistic model. The proposed estimator is called the SVD-based maximum likelihood logistic estimator. The theoretical properties of this estimator and its superiority over some existing estimators is derived in the sense of the matrix mean squared error criterion. The choice of scalar parameter for this estimator is discussed. A Monte Carlo simulation study has been conducted to compare the performance of the proposed estimator with the existing maximum likelihood estimator and ridge logistic estimator in terms of the mean squared error criterion. Moreover, a real data application is presented to illustrate the potential benefits of the proposed estimator and satisfy the theoretical findings. The results from the simulation study and the empirical application reveal that the proposed estimator works well and outperforms existing estimators in scalar mean squared error sense.\",\"PeriodicalId\":510566,\"journal\":{\"name\":\"المجلة العلمية للدراسات والبحوث المالية والإدارية‎\",\"volume\":\"76 s1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"المجلة العلمية للدراسات والبحوث المالية والإدارية‎\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/masf.2023.205072.1042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"المجلة العلمية للدراسات والبحوث المالية والإدارية‎","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/masf.2023.205072.1042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于设计矩阵奇异值分解技术的新估计器,以解决二元逻辑模型中的多重共线性问题。该估计器被称为基于 SVD 的最大似然 Logistic 估计器。在矩阵均方误差准则的意义上,推导出了该估计器的理论特性及其优于一些现有估计器的地方。还讨论了该估计器标量参数的选择。进行了蒙特卡罗模拟研究,比较了所提出的估计器与现有的最大似然估计器和岭对数估计器在均方误差准则方面的性能。此外,还介绍了一个真实数据应用,以说明所提估计器的潜在优势,并满足理论研究结果的要求。模拟研究和实际应用的结果表明,建议的估计器运行良好,在均方误差标量意义上优于现有估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Estimator to Combat Multicollinearity in Logistic Regression Model
This paper proposes a new estimator based on the singular value decomposition technique of the design matrix to remedy multicollinearity in the binary logistic model. The proposed estimator is called the SVD-based maximum likelihood logistic estimator. The theoretical properties of this estimator and its superiority over some existing estimators is derived in the sense of the matrix mean squared error criterion. The choice of scalar parameter for this estimator is discussed. A Monte Carlo simulation study has been conducted to compare the performance of the proposed estimator with the existing maximum likelihood estimator and ridge logistic estimator in terms of the mean squared error criterion. Moreover, a real data application is presented to illustrate the potential benefits of the proposed estimator and satisfy the theoretical findings. The results from the simulation study and the empirical application reveal that the proposed estimator works well and outperforms existing estimators in scalar mean squared error sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信