用于管道爬行的蠕虫启发元机器人的设计与步态规划

IF 4.9 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Yu Liu, Qingbiao Shi, Zhen Chen
{"title":"用于管道爬行的蠕虫启发元机器人的设计与步态规划","authors":"Yu Liu,&nbsp;Qingbiao Shi,&nbsp;Zhen Chen","doi":"10.1007/s42235-024-00497-4","DOIUrl":null,"url":null,"abstract":"<div><p>The earthworm has been attracted much attention in the research and development of biomimetic robots due to their unique locomotion mechanism, compact structure, and small motion space. This paper presents a new design and prototype of a worm-inspired metameric robot with a movement pattern similar to that of earthworms. The robot consists of multiple telescopic modules connected in series through joint modules. The telescopic module mimics the contraction and elongation motion modes of the earthworm segments. A kinematic and dynamic analysis is conducted on the telescopic module, and an input torque calculation method is provided to ensure sufficient friction between the robot and the pipe wall. The gait modes of the prototype robot for straight and turning locomotion are introduced, and these modes are extended to robots constructed by different numbers of telescopic modules. In addition, a method is proposed to increase the friction between the robot and the pipe wall in the aforementioned gait modes without changing the robot structure, thereby improving the robot’s motion ability in pipelines. The theoretical model of gait modes has also been validated through gait experiments. The findings of this paper would provide a useful basis for the design, modeling, and control of future worm inspired robots.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 3","pages":"1265 - 1277"},"PeriodicalIF":4.9000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Gait Planning of a Worm-inspired Metameric Robot for Pipe Crawling\",\"authors\":\"Yu Liu,&nbsp;Qingbiao Shi,&nbsp;Zhen Chen\",\"doi\":\"10.1007/s42235-024-00497-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The earthworm has been attracted much attention in the research and development of biomimetic robots due to their unique locomotion mechanism, compact structure, and small motion space. This paper presents a new design and prototype of a worm-inspired metameric robot with a movement pattern similar to that of earthworms. The robot consists of multiple telescopic modules connected in series through joint modules. The telescopic module mimics the contraction and elongation motion modes of the earthworm segments. A kinematic and dynamic analysis is conducted on the telescopic module, and an input torque calculation method is provided to ensure sufficient friction between the robot and the pipe wall. The gait modes of the prototype robot for straight and turning locomotion are introduced, and these modes are extended to robots constructed by different numbers of telescopic modules. In addition, a method is proposed to increase the friction between the robot and the pipe wall in the aforementioned gait modes without changing the robot structure, thereby improving the robot’s motion ability in pipelines. The theoretical model of gait modes has also been validated through gait experiments. The findings of this paper would provide a useful basis for the design, modeling, and control of future worm inspired robots.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"21 3\",\"pages\":\"1265 - 1277\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-024-00497-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00497-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

蚯蚓以其独特的运动机理、紧凑的结构和较小的运动空间在仿生机器人的研究和开发中备受关注。本文介绍了一种受蚯蚓启发的元机器人的新设计和原型,其运动模式与蚯蚓相似。该机器人由多个通过关节模块串联的伸缩模块组成。伸缩模块模仿蚯蚓节段的收缩和伸长运动模式。对伸缩模块进行了运动学和动力学分析,并提供了一种输入扭矩计算方法,以确保机器人与管壁之间有足够的摩擦力。介绍了原型机器人直线运动和转弯运动的步态模式,并将这些模式扩展到由不同数量的伸缩模块构成的机器人。此外,还提出了一种在不改变机器人结构的情况下增加上述步态模式下机器人与管壁之间摩擦力的方法,从而提高机器人在管道中的运动能力。步态模式的理论模型也通过步态实验得到了验证。本文的研究结果将为未来蠕虫启发机器人的设计、建模和控制提供有用的依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design and Gait Planning of a Worm-inspired Metameric Robot for Pipe Crawling

Design and Gait Planning of a Worm-inspired Metameric Robot for Pipe Crawling

Design and Gait Planning of a Worm-inspired Metameric Robot for Pipe Crawling

The earthworm has been attracted much attention in the research and development of biomimetic robots due to their unique locomotion mechanism, compact structure, and small motion space. This paper presents a new design and prototype of a worm-inspired metameric robot with a movement pattern similar to that of earthworms. The robot consists of multiple telescopic modules connected in series through joint modules. The telescopic module mimics the contraction and elongation motion modes of the earthworm segments. A kinematic and dynamic analysis is conducted on the telescopic module, and an input torque calculation method is provided to ensure sufficient friction between the robot and the pipe wall. The gait modes of the prototype robot for straight and turning locomotion are introduced, and these modes are extended to robots constructed by different numbers of telescopic modules. In addition, a method is proposed to increase the friction between the robot and the pipe wall in the aforementioned gait modes without changing the robot structure, thereby improving the robot’s motion ability in pipelines. The theoretical model of gait modes has also been validated through gait experiments. The findings of this paper would provide a useful basis for the design, modeling, and control of future worm inspired robots.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bionic Engineering
Journal of Bionic Engineering 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
10.00%
发文量
162
审稿时长
10.0 months
期刊介绍: The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to: Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion. Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials. Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices. Development of bioinspired computation methods and artificial intelligence for engineering applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信