利用高斯概率密度模型模拟内部冷却管道中微米级沙粒的表面沉积情况

IF 2.8 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
{"title":"利用高斯概率密度模型模拟内部冷却管道中微米级沙粒的表面沉积情况","authors":"","doi":"10.1007/s40571-024-00731-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Fine particles of ash and sand can deposit on the surfaces of cooling ducts, diminishing heat transfer efficiency and threatening the operation of turbine engines. The surface roughness of deposits can alter the nearby flow dynamics, and result in changes of subsequent particle collision and deposition. In this work, the effects of rib turbulence on particle deposition in cooling duct are numerically studied based on the wall modeled shear stress transport <em>k–ω</em> model with a UDF code correction for particle–wall impacts and the discrete particle model. A Gaussian probability density function is adopted to give the topology of deposited particles on the surface impacted by micron particles. We investigate how variables such as particle diameter and temperature impact collision and deposition processes. Additionally, the impact of ribbed turbulence on particle deposition is also discussed. The findings indicate that the impact ratio increases with particle diameter while exhibiting less sensitivity to temperature. Deposition ratios experience a significant decrease when particle size exceeds 1 μm. The temperature of the particles has a noteworthy influence on surface profile of deposits. Specifically, deposits on the wall surface, where particles are introduced by fluid injection, tend to assume a crane-like shape as the temperature rises. Notably, a more uniform deposition pattern is achieved when the particle temperature is low. In terms of particle distribution, low-velocity particles are more likely to accumulate in the windward region of the rib, especially at the junction of the rib wall, where the maximum deposition height is observed. Furthermore, deposits on the rib surface tend to grow, and the gap between the peak and valley widens as the particle temperature increases, as evident from the roughened rib surface features.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"31 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of surface deposits of micron sand particles in the internal cooling duct with a Gaussian probability density model\",\"authors\":\"\",\"doi\":\"10.1007/s40571-024-00731-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Fine particles of ash and sand can deposit on the surfaces of cooling ducts, diminishing heat transfer efficiency and threatening the operation of turbine engines. The surface roughness of deposits can alter the nearby flow dynamics, and result in changes of subsequent particle collision and deposition. In this work, the effects of rib turbulence on particle deposition in cooling duct are numerically studied based on the wall modeled shear stress transport <em>k–ω</em> model with a UDF code correction for particle–wall impacts and the discrete particle model. A Gaussian probability density function is adopted to give the topology of deposited particles on the surface impacted by micron particles. We investigate how variables such as particle diameter and temperature impact collision and deposition processes. Additionally, the impact of ribbed turbulence on particle deposition is also discussed. The findings indicate that the impact ratio increases with particle diameter while exhibiting less sensitivity to temperature. Deposition ratios experience a significant decrease when particle size exceeds 1 μm. The temperature of the particles has a noteworthy influence on surface profile of deposits. Specifically, deposits on the wall surface, where particles are introduced by fluid injection, tend to assume a crane-like shape as the temperature rises. Notably, a more uniform deposition pattern is achieved when the particle temperature is low. In terms of particle distribution, low-velocity particles are more likely to accumulate in the windward region of the rib, especially at the junction of the rib wall, where the maximum deposition height is observed. Furthermore, deposits on the rib surface tend to grow, and the gap between the peak and valley widens as the particle temperature increases, as evident from the roughened rib surface features.</p>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40571-024-00731-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00731-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 灰尘和沙子等细小颗粒会沉积在冷却管道表面,降低传热效率,威胁涡轮发动机的运行。沉积物的表面粗糙度会改变附近的流动动力学,并导致随后的颗粒碰撞和沉积发生变化。在这项工作中,基于壁面模型剪应力传输 k-ω 模型和 UDF 代码修正的颗粒-壁面撞击以及离散颗粒模型,对冷却管道中肋湍流对颗粒沉积的影响进行了数值研究。采用高斯概率密度函数给出了微米颗粒撞击表面沉积颗粒的拓扑结构。我们研究了粒子直径和温度等变量如何影响碰撞和沉积过程。此外,我们还讨论了带肋湍流对颗粒沉积的影响。研究结果表明,碰撞率随颗粒直径的增加而增加,但对温度的敏感性较低。当颗粒大小超过 1 μm 时,沉积率会显著下降。颗粒的温度对沉积物的表面轮廓有显著影响。具体来说,壁面上的沉积物(颗粒通过流体注入的方式进入壁面)随着温度的升高往往会呈现出起重机的形状。值得注意的是,当颗粒温度较低时,沉积模式会更加均匀。从颗粒的分布来看,低速颗粒更容易在肋骨的迎风区域堆积,尤其是在肋骨壁的交界处,因为在这里可以观察到最大的沉积高度。此外,肋骨表面的沉积物有增加的趋势,随着颗粒温度的升高,峰谷之间的差距也会扩大,这一点从肋骨表面粗糙化的特征可以看出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of surface deposits of micron sand particles in the internal cooling duct with a Gaussian probability density model

Abstract

Fine particles of ash and sand can deposit on the surfaces of cooling ducts, diminishing heat transfer efficiency and threatening the operation of turbine engines. The surface roughness of deposits can alter the nearby flow dynamics, and result in changes of subsequent particle collision and deposition. In this work, the effects of rib turbulence on particle deposition in cooling duct are numerically studied based on the wall modeled shear stress transport k–ω model with a UDF code correction for particle–wall impacts and the discrete particle model. A Gaussian probability density function is adopted to give the topology of deposited particles on the surface impacted by micron particles. We investigate how variables such as particle diameter and temperature impact collision and deposition processes. Additionally, the impact of ribbed turbulence on particle deposition is also discussed. The findings indicate that the impact ratio increases with particle diameter while exhibiting less sensitivity to temperature. Deposition ratios experience a significant decrease when particle size exceeds 1 μm. The temperature of the particles has a noteworthy influence on surface profile of deposits. Specifically, deposits on the wall surface, where particles are introduced by fluid injection, tend to assume a crane-like shape as the temperature rises. Notably, a more uniform deposition pattern is achieved when the particle temperature is low. In terms of particle distribution, low-velocity particles are more likely to accumulate in the windward region of the rib, especially at the junction of the rib wall, where the maximum deposition height is observed. Furthermore, deposits on the rib surface tend to grow, and the gap between the peak and valley widens as the particle temperature increases, as evident from the roughened rib surface features.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Particle Mechanics
Computational Particle Mechanics Mathematics-Computational Mathematics
CiteScore
5.70
自引率
9.10%
发文量
75
期刊介绍: GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research. SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including: (a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc., (b) Particles representing material phases in continua at the meso-, micro-and nano-scale and (c) Particles as a discretization unit in continua and discontinua in numerical methods such as Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信