利用遗传算法微调机器学习,加强多孔隔热涂层的机械性能评估

IF 3.2 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS
Ahmed A. H. Alkurdi, Hani K. Al-Mohair, Paul Rodrigues, Marwa Alazzawi, M. K. Sharma, Atheer Y. Oudah
{"title":"利用遗传算法微调机器学习,加强多孔隔热涂层的机械性能评估","authors":"Ahmed A. H. Alkurdi,&nbsp;Hani K. Al-Mohair,&nbsp;Paul Rodrigues,&nbsp;Marwa Alazzawi,&nbsp;M. K. Sharma,&nbsp;Atheer Y. Oudah","doi":"10.1007/s11666-024-01756-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a Genetic Algorithm-Enhanced Machine Learning (GAML) model has been established to predict stress variations (<i>σ</i><sub>ave</sub>) and equivalent strain (<i>ε</i><sub>cr</sub>) in porous thermal barrier coatings (TBCs) subjected to diverse thermal loading conditions. The input parameters encompass loading parameters, geometrical characteristics, and porosity features. Remarkable predictive performance was observed, with determination coefficient values of 0.971 for <i>ε</i><sub>cr</sub> and 0.939 for <i>σ</i><sub>ave</sub>, emphasizing a robust correlation between predicted and actual values. The hierarchical nature of the GAML model allows latent patterns and relationships within the data to be effectively unveiled. Moreover, the study illustrated that the relevance of each input parameter undergoes substantial changes with variations in output target values, indicating unique sensitivities of each output to specific input parameters. Specifically, at high stress levels, the weight factors of porosity features became more significant in predicting <i>σ</i><sub>ave</sub> due to their direct influence on stress concentration effects, while thermal loading parameters are more effective in predicting ε<sub>cr</sub>. Lastly, through an illustrative example, the model’s utility in facilitating coating design and parameter adjustment for achieving desired mechanical properties was demonstrated.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"33 4","pages":"824 - 838"},"PeriodicalIF":3.2000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Mechanical Behavior Assessment in Porous Thermal Barrier Coatings using a Machine Learning Fine-Tuned with Genetic Algorithm\",\"authors\":\"Ahmed A. H. Alkurdi,&nbsp;Hani K. Al-Mohair,&nbsp;Paul Rodrigues,&nbsp;Marwa Alazzawi,&nbsp;M. K. Sharma,&nbsp;Atheer Y. Oudah\",\"doi\":\"10.1007/s11666-024-01756-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a Genetic Algorithm-Enhanced Machine Learning (GAML) model has been established to predict stress variations (<i>σ</i><sub>ave</sub>) and equivalent strain (<i>ε</i><sub>cr</sub>) in porous thermal barrier coatings (TBCs) subjected to diverse thermal loading conditions. The input parameters encompass loading parameters, geometrical characteristics, and porosity features. Remarkable predictive performance was observed, with determination coefficient values of 0.971 for <i>ε</i><sub>cr</sub> and 0.939 for <i>σ</i><sub>ave</sub>, emphasizing a robust correlation between predicted and actual values. The hierarchical nature of the GAML model allows latent patterns and relationships within the data to be effectively unveiled. Moreover, the study illustrated that the relevance of each input parameter undergoes substantial changes with variations in output target values, indicating unique sensitivities of each output to specific input parameters. Specifically, at high stress levels, the weight factors of porosity features became more significant in predicting <i>σ</i><sub>ave</sub> due to their direct influence on stress concentration effects, while thermal loading parameters are more effective in predicting ε<sub>cr</sub>. Lastly, through an illustrative example, the model’s utility in facilitating coating design and parameter adjustment for achieving desired mechanical properties was demonstrated.</p></div>\",\"PeriodicalId\":679,\"journal\":{\"name\":\"Journal of Thermal Spray Technology\",\"volume\":\"33 4\",\"pages\":\"824 - 838\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Spray Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11666-024-01756-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-024-01756-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究建立了遗传算法增强机器学习(GAML)模型,用于预测多孔隔热涂层(TBC)在不同热加载条件下的应力变化(σave)和等效应变(εcr)。输入参数包括加载参数、几何特征和孔隙特征。该方法的预测效果显著,εcr 和 σave 的确定系数值分别为 0.971 和 0.939,强调了预测值与实际值之间的稳健相关性。GAML 模型的分层性质可以有效揭示数据中的潜在模式和关系。此外,研究还表明,每个输入参数的相关性会随着输出目标值的变化而发生重大变化,这表明每个输出对特定输入参数具有独特的敏感性。具体来说,在高应力水平下,孔隙率特征的权重因子对应力集中效应有直接影响,因此在预测σave 时更为重要,而热加载参数在预测εcr 时更为有效。最后,通过一个示例展示了该模型在促进涂层设计和参数调整以实现理想机械性能方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing Mechanical Behavior Assessment in Porous Thermal Barrier Coatings using a Machine Learning Fine-Tuned with Genetic Algorithm

Enhancing Mechanical Behavior Assessment in Porous Thermal Barrier Coatings using a Machine Learning Fine-Tuned with Genetic Algorithm

In this study, a Genetic Algorithm-Enhanced Machine Learning (GAML) model has been established to predict stress variations (σave) and equivalent strain (εcr) in porous thermal barrier coatings (TBCs) subjected to diverse thermal loading conditions. The input parameters encompass loading parameters, geometrical characteristics, and porosity features. Remarkable predictive performance was observed, with determination coefficient values of 0.971 for εcr and 0.939 for σave, emphasizing a robust correlation between predicted and actual values. The hierarchical nature of the GAML model allows latent patterns and relationships within the data to be effectively unveiled. Moreover, the study illustrated that the relevance of each input parameter undergoes substantial changes with variations in output target values, indicating unique sensitivities of each output to specific input parameters. Specifically, at high stress levels, the weight factors of porosity features became more significant in predicting σave due to their direct influence on stress concentration effects, while thermal loading parameters are more effective in predicting εcr. Lastly, through an illustrative example, the model’s utility in facilitating coating design and parameter adjustment for achieving desired mechanical properties was demonstrated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Thermal Spray Technology
Journal of Thermal Spray Technology 工程技术-材料科学:膜
CiteScore
5.20
自引率
25.80%
发文量
198
审稿时长
2.6 months
期刊介绍: From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving. A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization. The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信