{"title":"深海灯笼鱼(Myctophidae)嗅觉器官性二态性的首个证据","authors":"Rene P. Martin, W. Leo Smith","doi":"10.7717/peerj.17075","DOIUrl":null,"url":null,"abstract":"Finding a mate is of the utmost importance for organisms, and the traits associated with successfully finding one can be under strong selective pressures. In habitats where biomass and population density is often low, like the enormous open spaces of the deep sea, animals have evolved many adaptations for finding mates. One convergent adaptation seen in many deep-sea fishes is sexual dimorphism in olfactory organs, where, relative to body size, males have evolved greatly enlarged olfactory organs compared to females. Females are known to give off chemical cues such as pheromones, and these chemical stimuli can traverse long distances in the stable, stratified water of the deep sea and be picked up by the olfactory organs of males. This adaptation is believed to help males in multiple lineages of fishes find mates in deep-sea habitats. In this study, we describe the first morphological evidence of sexual dimorphism in the olfactory organs of lanternfishes (Myctophidae) in the genus Loweina. Lanternfishes are one of the most abundant vertebrates in the deep sea and are hypothesized to use visual signals from bioluminescence for mate recognition or mate detection. Bioluminescent cues that are readily visible at distances as far as 10 m in the aphotic deep sea are likely important for high population density lanternfish species that have high mate encounter rates. In contrast, myctophids found in lower density environments where species encounter rates are lower, like those in Loweina, likely benefit from longer-range chemical or olfactory cues for finding and identifying mates.","PeriodicalId":19799,"journal":{"name":"PeerJ","volume":"42 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First evidence of sexual dimorphism in olfactory organs of deep-sea lanternfishes (Myctophidae)\",\"authors\":\"Rene P. Martin, W. Leo Smith\",\"doi\":\"10.7717/peerj.17075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding a mate is of the utmost importance for organisms, and the traits associated with successfully finding one can be under strong selective pressures. In habitats where biomass and population density is often low, like the enormous open spaces of the deep sea, animals have evolved many adaptations for finding mates. One convergent adaptation seen in many deep-sea fishes is sexual dimorphism in olfactory organs, where, relative to body size, males have evolved greatly enlarged olfactory organs compared to females. Females are known to give off chemical cues such as pheromones, and these chemical stimuli can traverse long distances in the stable, stratified water of the deep sea and be picked up by the olfactory organs of males. This adaptation is believed to help males in multiple lineages of fishes find mates in deep-sea habitats. In this study, we describe the first morphological evidence of sexual dimorphism in the olfactory organs of lanternfishes (Myctophidae) in the genus Loweina. Lanternfishes are one of the most abundant vertebrates in the deep sea and are hypothesized to use visual signals from bioluminescence for mate recognition or mate detection. Bioluminescent cues that are readily visible at distances as far as 10 m in the aphotic deep sea are likely important for high population density lanternfish species that have high mate encounter rates. In contrast, myctophids found in lower density environments where species encounter rates are lower, like those in Loweina, likely benefit from longer-range chemical or olfactory cues for finding and identifying mates.\",\"PeriodicalId\":19799,\"journal\":{\"name\":\"PeerJ\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj.17075\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7717/peerj.17075","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
First evidence of sexual dimorphism in olfactory organs of deep-sea lanternfishes (Myctophidae)
Finding a mate is of the utmost importance for organisms, and the traits associated with successfully finding one can be under strong selective pressures. In habitats where biomass and population density is often low, like the enormous open spaces of the deep sea, animals have evolved many adaptations for finding mates. One convergent adaptation seen in many deep-sea fishes is sexual dimorphism in olfactory organs, where, relative to body size, males have evolved greatly enlarged olfactory organs compared to females. Females are known to give off chemical cues such as pheromones, and these chemical stimuli can traverse long distances in the stable, stratified water of the deep sea and be picked up by the olfactory organs of males. This adaptation is believed to help males in multiple lineages of fishes find mates in deep-sea habitats. In this study, we describe the first morphological evidence of sexual dimorphism in the olfactory organs of lanternfishes (Myctophidae) in the genus Loweina. Lanternfishes are one of the most abundant vertebrates in the deep sea and are hypothesized to use visual signals from bioluminescence for mate recognition or mate detection. Bioluminescent cues that are readily visible at distances as far as 10 m in the aphotic deep sea are likely important for high population density lanternfish species that have high mate encounter rates. In contrast, myctophids found in lower density environments where species encounter rates are lower, like those in Loweina, likely benefit from longer-range chemical or olfactory cues for finding and identifying mates.
期刊介绍:
PeerJ is an open access peer-reviewed scientific journal covering research in the biological and medical sciences. At PeerJ, authors take out a lifetime publication plan (for as little as $99) which allows them to publish articles in the journal for free, forever. PeerJ has 5 Nobel Prize Winners on the Board; they have won several industry and media awards; and they are widely recognized as being one of the most interesting recent developments in academic publishing.