通过具有微图案结构的聚合物薄膜降解生成微图案微塑料

IF 2.3 4区 化学 Q3 POLYMER SCIENCE
Haruki Uchida, Wakako Uchiyama, Erika Kurita, Masayuki Kirihara, Yohei Kotsuchibashi
{"title":"通过具有微图案结构的聚合物薄膜降解生成微图案微塑料","authors":"Haruki Uchida, Wakako Uchiyama, Erika Kurita, Masayuki Kirihara, Yohei Kotsuchibashi","doi":"10.1038/s41428-024-00897-7","DOIUrl":null,"url":null,"abstract":"Water-insoluble micropatterned films were prepared from poly(vinyl alcohol) (PVA) (or ethylene-vinyl alcohol copolymer (EVOH)) and poly(methacrylic acid) (poly(MAAc)). The carboxy groups in poly(MAAc) underwent dehydration reactions with the hydroxy groups in the vinyl alcohol units during heating at 135 °C, which resulted in crosslinking with ester bonds and formation of a polymeric network in the micropatterned films. The surface structures of the micropatterned films and the shapes of the peeled microplastics in the supernatant were measured after decomposition in an oxidizing environment, after ultrasonic irradiation, and with both. The results revealed that the micropatterns could be peeled off from the films after they were subjected to appropriate decomposition conditions and maintained their patterned shapes. Water-insoluble micropatterned films were prepared from poly(vinyl alcohol) (PVA) (or ethylene-vinyl alcohol copolymer (EVOH)) and poly(methacrylic acid) (poly(MAAc)). The carboxy groups in poly(MAAc) underwent dehydration reactions with the hydroxy groups in the vinyl alcohol units during heating at 135 °C, which resulted in the introduction of a crosslinked structure with ester bonds into the polymeric network of the micropatterned films. The micropatterns could be peeled off from the films after decomposition and maintained their patterned shapes.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"56 7","pages":"677-684"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41428-024-00897-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Micropatterned microplastic generation via degradation of polymeric films with micropatterned structures\",\"authors\":\"Haruki Uchida, Wakako Uchiyama, Erika Kurita, Masayuki Kirihara, Yohei Kotsuchibashi\",\"doi\":\"10.1038/s41428-024-00897-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water-insoluble micropatterned films were prepared from poly(vinyl alcohol) (PVA) (or ethylene-vinyl alcohol copolymer (EVOH)) and poly(methacrylic acid) (poly(MAAc)). The carboxy groups in poly(MAAc) underwent dehydration reactions with the hydroxy groups in the vinyl alcohol units during heating at 135 °C, which resulted in crosslinking with ester bonds and formation of a polymeric network in the micropatterned films. The surface structures of the micropatterned films and the shapes of the peeled microplastics in the supernatant were measured after decomposition in an oxidizing environment, after ultrasonic irradiation, and with both. The results revealed that the micropatterns could be peeled off from the films after they were subjected to appropriate decomposition conditions and maintained their patterned shapes. Water-insoluble micropatterned films were prepared from poly(vinyl alcohol) (PVA) (or ethylene-vinyl alcohol copolymer (EVOH)) and poly(methacrylic acid) (poly(MAAc)). The carboxy groups in poly(MAAc) underwent dehydration reactions with the hydroxy groups in the vinyl alcohol units during heating at 135 °C, which resulted in the introduction of a crosslinked structure with ester bonds into the polymeric network of the micropatterned films. The micropatterns could be peeled off from the films after decomposition and maintained their patterned shapes.\",\"PeriodicalId\":20302,\"journal\":{\"name\":\"Polymer Journal\",\"volume\":\"56 7\",\"pages\":\"677-684\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41428-024-00897-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41428-024-00897-7\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-024-00897-7","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

用聚(乙烯醇)(PVA)(或乙烯-乙烯醇共聚物(EVOH))和聚(甲基丙烯酸)(poly(MAAc))制备了不溶于水的微图案薄膜。在 135 °C 的加热过程中,聚(甲基丙烯酸)中的羧基与乙烯醇单元中的羟基发生脱水反应,从而与酯键交联,在微图案薄膜中形成聚合物网络。测量了微图案薄膜在氧化环境中分解后、超声波辐照后以及两者同时分解后的表面结构和上清液中剥离的微塑料的形状。结果表明,在适当的分解条件下,微图案可以从薄膜上剥离,并保持其图案形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Micropatterned microplastic generation via degradation of polymeric films with micropatterned structures

Micropatterned microplastic generation via degradation of polymeric films with micropatterned structures

Micropatterned microplastic generation via degradation of polymeric films with micropatterned structures
Water-insoluble micropatterned films were prepared from poly(vinyl alcohol) (PVA) (or ethylene-vinyl alcohol copolymer (EVOH)) and poly(methacrylic acid) (poly(MAAc)). The carboxy groups in poly(MAAc) underwent dehydration reactions with the hydroxy groups in the vinyl alcohol units during heating at 135 °C, which resulted in crosslinking with ester bonds and formation of a polymeric network in the micropatterned films. The surface structures of the micropatterned films and the shapes of the peeled microplastics in the supernatant were measured after decomposition in an oxidizing environment, after ultrasonic irradiation, and with both. The results revealed that the micropatterns could be peeled off from the films after they were subjected to appropriate decomposition conditions and maintained their patterned shapes. Water-insoluble micropatterned films were prepared from poly(vinyl alcohol) (PVA) (or ethylene-vinyl alcohol copolymer (EVOH)) and poly(methacrylic acid) (poly(MAAc)). The carboxy groups in poly(MAAc) underwent dehydration reactions with the hydroxy groups in the vinyl alcohol units during heating at 135 °C, which resulted in the introduction of a crosslinked structure with ester bonds into the polymeric network of the micropatterned films. The micropatterns could be peeled off from the films after decomposition and maintained their patterned shapes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Journal
Polymer Journal 化学-高分子科学
CiteScore
5.60
自引率
7.10%
发文量
131
审稿时长
2.5 months
期刊介绍: Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews. Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below: Polymer synthesis and reactions Polymer structures Physical properties of polymers Polymer surface and interfaces Functional polymers Supramolecular polymers Self-assembled materials Biopolymers and bio-related polymer materials Polymer engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信