机器学习在边缘裂缝半无限弹性板断裂分析中的应用

Saeed Hossein Moghtaderi, Alias Jedi, Ahmad Kamal Ariffin, Prakash Thamburaja
{"title":"机器学习在边缘裂缝半无限弹性板断裂分析中的应用","authors":"Saeed Hossein Moghtaderi, Alias Jedi, Ahmad Kamal Ariffin, Prakash Thamburaja","doi":"10.3221/igf-esis.68.13","DOIUrl":null,"url":null,"abstract":"This paper discusses the application of machine learning techniques, notably artificial neural networks (ANN), in the fracture analysis of semi-infinite elastic plates with edge cracks. The Stress Intensity Factor (SIF) model for a semi-infinite plate with a tip crack is employed in the study, and Finite Element Analysis (FEA) is performed via ABAQUS CAE to build a comprehensive dataset containing numerical simulations data. To improve accuracy and reliability, data preprocessing is implemented, and ANN as a valuable machine learning model is trained with various variables describing crack propagation, stress distribution, and plate structure as input parameters. The suggested method is compared to established fracture analysis methods, proving its accuracy in predicting crack behavior and stress distribution under a variety of loading circumstances. The model provides useful insights into the behavior of edge cracks in semi-infinite elastic plates, enhancing material engineering and structural mechanics. The study demonstrates the potential of combining FEA and machine learning to improve fracture analysis capabilities, and it discusses limitations and future research directions, encouraging the exploration of advanced machine learning techniques and broader fracture scenarios for future fracture mechanics innovation.","PeriodicalId":507970,"journal":{"name":"Frattura ed Integrità Strutturale","volume":"15 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Machine Learning in Fracture Analysis of Edge Crack Semi-Infinite Elastic Plate\",\"authors\":\"Saeed Hossein Moghtaderi, Alias Jedi, Ahmad Kamal Ariffin, Prakash Thamburaja\",\"doi\":\"10.3221/igf-esis.68.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the application of machine learning techniques, notably artificial neural networks (ANN), in the fracture analysis of semi-infinite elastic plates with edge cracks. The Stress Intensity Factor (SIF) model for a semi-infinite plate with a tip crack is employed in the study, and Finite Element Analysis (FEA) is performed via ABAQUS CAE to build a comprehensive dataset containing numerical simulations data. To improve accuracy and reliability, data preprocessing is implemented, and ANN as a valuable machine learning model is trained with various variables describing crack propagation, stress distribution, and plate structure as input parameters. The suggested method is compared to established fracture analysis methods, proving its accuracy in predicting crack behavior and stress distribution under a variety of loading circumstances. The model provides useful insights into the behavior of edge cracks in semi-infinite elastic plates, enhancing material engineering and structural mechanics. The study demonstrates the potential of combining FEA and machine learning to improve fracture analysis capabilities, and it discusses limitations and future research directions, encouraging the exploration of advanced machine learning techniques and broader fracture scenarios for future fracture mechanics innovation.\",\"PeriodicalId\":507970,\"journal\":{\"name\":\"Frattura ed Integrità Strutturale\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frattura ed Integrità Strutturale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3221/igf-esis.68.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frattura ed Integrità Strutturale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3221/igf-esis.68.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了机器学习技术,特别是人工神经网络(ANN)在带有边缘裂纹的半无限弹性板断裂分析中的应用。研究采用了带有尖端裂纹的半无限板的应力强度因子(SIF)模型,并通过 ABAQUS CAE 进行了有限元分析(FEA),从而建立了包含数值模拟数据的综合数据集。为提高准确性和可靠性,对数据进行了预处理,并使用描述裂纹扩展、应力分布和板结构的各种变量作为输入参数,训练了有价值的机器学习模型 ANN。所建议的方法与已有的断裂分析方法进行了比较,证明了其在各种加载情况下预测裂纹行为和应力分布的准确性。该模型为半无限弹性板边缘裂纹的行为提供了有用的见解,从而提高了材料工程和结构力学的水平。该研究展示了将有限元分析和机器学习相结合以提高断裂分析能力的潜力,并讨论了局限性和未来研究方向,鼓励探索先进的机器学习技术和更广泛的断裂场景,以促进未来断裂力学的创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Machine Learning in Fracture Analysis of Edge Crack Semi-Infinite Elastic Plate
This paper discusses the application of machine learning techniques, notably artificial neural networks (ANN), in the fracture analysis of semi-infinite elastic plates with edge cracks. The Stress Intensity Factor (SIF) model for a semi-infinite plate with a tip crack is employed in the study, and Finite Element Analysis (FEA) is performed via ABAQUS CAE to build a comprehensive dataset containing numerical simulations data. To improve accuracy and reliability, data preprocessing is implemented, and ANN as a valuable machine learning model is trained with various variables describing crack propagation, stress distribution, and plate structure as input parameters. The suggested method is compared to established fracture analysis methods, proving its accuracy in predicting crack behavior and stress distribution under a variety of loading circumstances. The model provides useful insights into the behavior of edge cracks in semi-infinite elastic plates, enhancing material engineering and structural mechanics. The study demonstrates the potential of combining FEA and machine learning to improve fracture analysis capabilities, and it discusses limitations and future research directions, encouraging the exploration of advanced machine learning techniques and broader fracture scenarios for future fracture mechanics innovation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信