Saeed Hossein Moghtaderi, Alias Jedi, Ahmad Kamal Ariffin, Prakash Thamburaja
{"title":"机器学习在边缘裂缝半无限弹性板断裂分析中的应用","authors":"Saeed Hossein Moghtaderi, Alias Jedi, Ahmad Kamal Ariffin, Prakash Thamburaja","doi":"10.3221/igf-esis.68.13","DOIUrl":null,"url":null,"abstract":"This paper discusses the application of machine learning techniques, notably artificial neural networks (ANN), in the fracture analysis of semi-infinite elastic plates with edge cracks. The Stress Intensity Factor (SIF) model for a semi-infinite plate with a tip crack is employed in the study, and Finite Element Analysis (FEA) is performed via ABAQUS CAE to build a comprehensive dataset containing numerical simulations data. To improve accuracy and reliability, data preprocessing is implemented, and ANN as a valuable machine learning model is trained with various variables describing crack propagation, stress distribution, and plate structure as input parameters. The suggested method is compared to established fracture analysis methods, proving its accuracy in predicting crack behavior and stress distribution under a variety of loading circumstances. The model provides useful insights into the behavior of edge cracks in semi-infinite elastic plates, enhancing material engineering and structural mechanics. The study demonstrates the potential of combining FEA and machine learning to improve fracture analysis capabilities, and it discusses limitations and future research directions, encouraging the exploration of advanced machine learning techniques and broader fracture scenarios for future fracture mechanics innovation.","PeriodicalId":507970,"journal":{"name":"Frattura ed Integrità Strutturale","volume":"15 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Machine Learning in Fracture Analysis of Edge Crack Semi-Infinite Elastic Plate\",\"authors\":\"Saeed Hossein Moghtaderi, Alias Jedi, Ahmad Kamal Ariffin, Prakash Thamburaja\",\"doi\":\"10.3221/igf-esis.68.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the application of machine learning techniques, notably artificial neural networks (ANN), in the fracture analysis of semi-infinite elastic plates with edge cracks. The Stress Intensity Factor (SIF) model for a semi-infinite plate with a tip crack is employed in the study, and Finite Element Analysis (FEA) is performed via ABAQUS CAE to build a comprehensive dataset containing numerical simulations data. To improve accuracy and reliability, data preprocessing is implemented, and ANN as a valuable machine learning model is trained with various variables describing crack propagation, stress distribution, and plate structure as input parameters. The suggested method is compared to established fracture analysis methods, proving its accuracy in predicting crack behavior and stress distribution under a variety of loading circumstances. The model provides useful insights into the behavior of edge cracks in semi-infinite elastic plates, enhancing material engineering and structural mechanics. The study demonstrates the potential of combining FEA and machine learning to improve fracture analysis capabilities, and it discusses limitations and future research directions, encouraging the exploration of advanced machine learning techniques and broader fracture scenarios for future fracture mechanics innovation.\",\"PeriodicalId\":507970,\"journal\":{\"name\":\"Frattura ed Integrità Strutturale\",\"volume\":\"15 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frattura ed Integrità Strutturale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3221/igf-esis.68.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frattura ed Integrità Strutturale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3221/igf-esis.68.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Machine Learning in Fracture Analysis of Edge Crack Semi-Infinite Elastic Plate
This paper discusses the application of machine learning techniques, notably artificial neural networks (ANN), in the fracture analysis of semi-infinite elastic plates with edge cracks. The Stress Intensity Factor (SIF) model for a semi-infinite plate with a tip crack is employed in the study, and Finite Element Analysis (FEA) is performed via ABAQUS CAE to build a comprehensive dataset containing numerical simulations data. To improve accuracy and reliability, data preprocessing is implemented, and ANN as a valuable machine learning model is trained with various variables describing crack propagation, stress distribution, and plate structure as input parameters. The suggested method is compared to established fracture analysis methods, proving its accuracy in predicting crack behavior and stress distribution under a variety of loading circumstances. The model provides useful insights into the behavior of edge cracks in semi-infinite elastic plates, enhancing material engineering and structural mechanics. The study demonstrates the potential of combining FEA and machine learning to improve fracture analysis capabilities, and it discusses limitations and future research directions, encouraging the exploration of advanced machine learning techniques and broader fracture scenarios for future fracture mechanics innovation.