{"title":"带抑制装置的海洋拖缆 VIV 响应的数值研究与布置优化","authors":"Li Guo , Yuchao Yuan , Wenyong Tang , Hongxiang Xue","doi":"10.1016/j.marstruc.2024.103598","DOIUrl":null,"url":null,"abstract":"<div><p>Vortex-induced vibration will occur due to the vortex shedding around the marine towing cable during the towing movement, which will further affect the acquisition efficiency of the marine seismic exploration system. Suppression device is widely used to suppress the VIV response of the marine slenderness structures. In order to investigate the passive suppression mechanism on the marine towing cable, a numerical VIV model is proposed to predict the VIV response of marine towing cable with buoyancy modules. The steady-state and VIV characteristics of marine towing cable with different coverage, layout and slenderness ratio are studied firstly. The parameters have a nonlinear relationship with the VIV response of cable and excessive arrangement of buoyancy module will enlarge the vibration displacement. Where to install a limited number of suppression devices is a challenge for practical engineering. Genetic algorithm is introduced to solve the optimization problem of the suppression device arrangements in this paper. The suppression device arrangement of towing cable will evolve in the direction of decreasing cable VIV displacement until reaching the optimal arrangement. The proposed method is demonstrated by comparing with some typical working conditions. It turns out that the proposed method can perform the optimization design of the suppression device arrangement efficiently. The VIV displacement of cable can be reduced obviously through the optimization design.</p></div>","PeriodicalId":49879,"journal":{"name":"Marine Structures","volume":"95 ","pages":"Article 103598"},"PeriodicalIF":4.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation and arrangement optimization on VIV response of marine towing cable with suppression device\",\"authors\":\"Li Guo , Yuchao Yuan , Wenyong Tang , Hongxiang Xue\",\"doi\":\"10.1016/j.marstruc.2024.103598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vortex-induced vibration will occur due to the vortex shedding around the marine towing cable during the towing movement, which will further affect the acquisition efficiency of the marine seismic exploration system. Suppression device is widely used to suppress the VIV response of the marine slenderness structures. In order to investigate the passive suppression mechanism on the marine towing cable, a numerical VIV model is proposed to predict the VIV response of marine towing cable with buoyancy modules. The steady-state and VIV characteristics of marine towing cable with different coverage, layout and slenderness ratio are studied firstly. The parameters have a nonlinear relationship with the VIV response of cable and excessive arrangement of buoyancy module will enlarge the vibration displacement. Where to install a limited number of suppression devices is a challenge for practical engineering. Genetic algorithm is introduced to solve the optimization problem of the suppression device arrangements in this paper. The suppression device arrangement of towing cable will evolve in the direction of decreasing cable VIV displacement until reaching the optimal arrangement. The proposed method is demonstrated by comparing with some typical working conditions. It turns out that the proposed method can perform the optimization design of the suppression device arrangement efficiently. The VIV displacement of cable can be reduced obviously through the optimization design.</p></div>\",\"PeriodicalId\":49879,\"journal\":{\"name\":\"Marine Structures\",\"volume\":\"95 \",\"pages\":\"Article 103598\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951833924000261\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951833924000261","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Numerical investigation and arrangement optimization on VIV response of marine towing cable with suppression device
Vortex-induced vibration will occur due to the vortex shedding around the marine towing cable during the towing movement, which will further affect the acquisition efficiency of the marine seismic exploration system. Suppression device is widely used to suppress the VIV response of the marine slenderness structures. In order to investigate the passive suppression mechanism on the marine towing cable, a numerical VIV model is proposed to predict the VIV response of marine towing cable with buoyancy modules. The steady-state and VIV characteristics of marine towing cable with different coverage, layout and slenderness ratio are studied firstly. The parameters have a nonlinear relationship with the VIV response of cable and excessive arrangement of buoyancy module will enlarge the vibration displacement. Where to install a limited number of suppression devices is a challenge for practical engineering. Genetic algorithm is introduced to solve the optimization problem of the suppression device arrangements in this paper. The suppression device arrangement of towing cable will evolve in the direction of decreasing cable VIV displacement until reaching the optimal arrangement. The proposed method is demonstrated by comparing with some typical working conditions. It turns out that the proposed method can perform the optimization design of the suppression device arrangement efficiently. The VIV displacement of cable can be reduced obviously through the optimization design.
期刊介绍:
This journal aims to provide a medium for presentation and discussion of the latest developments in research, design, fabrication and in-service experience relating to marine structures, i.e., all structures of steel, concrete, light alloy or composite construction having an interface with the sea, including ships, fixed and mobile offshore platforms, submarine and submersibles, pipelines, subsea systems for shallow and deep ocean operations and coastal structures such as piers.