设计用于电力系统的新型神经自适应励磁控制系统

Lionel Leroy Sonfack, René Kuaté-Fochie, A. M. Fombu, Rostand Marc Douanla, Arnaud Flanclair Tchouani Njomo, G. Kenné
{"title":"设计用于电力系统的新型神经自适应励磁控制系统","authors":"Lionel Leroy Sonfack, René Kuaté-Fochie, A. M. Fombu, Rostand Marc Douanla, Arnaud Flanclair Tchouani Njomo, G. Kenné","doi":"10.1049/gtd2.13102","DOIUrl":null,"url":null,"abstract":"This manuscript proposes a robust excitation control strategy for synchronous generators using backstepping theory and an artificial neural network with a radial basis function to improve power system performance during disturbances and parametric uncertainties. The artificial neural network is used to estimate unmeasurable quantities and unknown internal parameters of a recursive backstepping control. Lyapunov theory is used to carry out the stability analysis and to deduce the online adaptation laws of artificial neural network parameters (weights, centres and widths). To validate the performance of this approach, simulations are performed on an IEEE 9 bus multi‐machine power system. Different test results, compared with those of an existing non‐linear adaptive controller, confirm the high robustness of the proposed method against disturbances and uncertainties.","PeriodicalId":510347,"journal":{"name":"IET Generation, Transmission & Distribution","volume":"19 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a novel neuro‐adaptive excitation control system for power systems\",\"authors\":\"Lionel Leroy Sonfack, René Kuaté-Fochie, A. M. Fombu, Rostand Marc Douanla, Arnaud Flanclair Tchouani Njomo, G. Kenné\",\"doi\":\"10.1049/gtd2.13102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This manuscript proposes a robust excitation control strategy for synchronous generators using backstepping theory and an artificial neural network with a radial basis function to improve power system performance during disturbances and parametric uncertainties. The artificial neural network is used to estimate unmeasurable quantities and unknown internal parameters of a recursive backstepping control. Lyapunov theory is used to carry out the stability analysis and to deduce the online adaptation laws of artificial neural network parameters (weights, centres and widths). To validate the performance of this approach, simulations are performed on an IEEE 9 bus multi‐machine power system. Different test results, compared with those of an existing non‐linear adaptive controller, confirm the high robustness of the proposed method against disturbances and uncertainties.\",\"PeriodicalId\":510347,\"journal\":{\"name\":\"IET Generation, Transmission & Distribution\",\"volume\":\"19 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Generation, Transmission & Distribution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/gtd2.13102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Generation, Transmission & Distribution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/gtd2.13102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文稿提出了一种利用反步进理论和带有径向基函数的人工神经网络的同步发电机鲁棒励磁控制策略,以改善电力系统在扰动和参数不确定情况下的性能。人工神经网络用于估计不可测量的量和递归反步控制的未知内部参数。利用 Lyapunov 理论进行稳定性分析,并推导出人工神经网络参数(权重、中心和宽度)的在线适应法则。为了验证这种方法的性能,在一个 IEEE 9 总线多机器电力系统上进行了模拟。与现有的非线性自适应控制器相比,不同的测试结果证实了所提出的方法对干扰和不确定性具有很强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a novel neuro‐adaptive excitation control system for power systems
This manuscript proposes a robust excitation control strategy for synchronous generators using backstepping theory and an artificial neural network with a radial basis function to improve power system performance during disturbances and parametric uncertainties. The artificial neural network is used to estimate unmeasurable quantities and unknown internal parameters of a recursive backstepping control. Lyapunov theory is used to carry out the stability analysis and to deduce the online adaptation laws of artificial neural network parameters (weights, centres and widths). To validate the performance of this approach, simulations are performed on an IEEE 9 bus multi‐machine power system. Different test results, compared with those of an existing non‐linear adaptive controller, confirm the high robustness of the proposed method against disturbances and uncertainties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信