Philip Anggo Krisbiantoro , Tzu-Jung Kuo , Yu-Chia Chang , Weisheng Liao , Jih-Peng Sun , Chun-Yen Yang , Yuichi Kamiya , Fa-Kuen Shieh , Chia-Chin Chen , Kevin C.-W Wu
{"title":"将 PET 衍生的对苯二甲酸二(2-羟乙基)酯作为无溶剂和水热合成基于 BDC 的 MOF 的新链接源","authors":"Philip Anggo Krisbiantoro , Tzu-Jung Kuo , Yu-Chia Chang , Weisheng Liao , Jih-Peng Sun , Chun-Yen Yang , Yuichi Kamiya , Fa-Kuen Shieh , Chia-Chin Chen , Kevin C.-W Wu","doi":"10.1016/j.mtnano.2024.100459","DOIUrl":null,"url":null,"abstract":"<div><p>To date, the high cost of organic linkers and the energy-consuming synthesis processes remain two of the main challenges for the commercialization of metal-organic frameworks (MOFs). Herein, we demonstrate that polyethylene terephthalate (PET)-derived bis(2-hydroxyethyl) terephthalate (BHET) is a new linker source that enables the facile solvent-free and hydrothermal synthesis of BDC-based MOFs. Using BHET as a linker source, UiO-66(Zr) was rapidly synthesized via a solvent-free “grind and bake” technique, while Ca-BDC and Ba-BDC were easily obtained by using hydrothermal synthesis. We found that the hydrolysis of BHET to terephthalate anion (BDC<sup>2−</sup>) over proton produced from the hydrolysis/clustering of Zr precursor and hydroxyl anion produced from the dissolution of M(OH)<sub>2</sub> (M = Ca or Ba) was the key to the crystal growth of solvent-free synthesized UiO-66(Zr) and hydrothermally synthesized M-BDC (M = Ca or Ba), respectively. While the as-synthesized UiO-66(Zr) was highly active for the esterification of lactic acid (LA) with ethanol (EtOH), Ca-BDC and Ba-BDC exhibited remarkable electrochemical performance for lithium storage. Our strategy provides a major step towards realizing the idea of a more facile, green, and low-cost synthesis of PET-derived MOFs compared to prior arts applicable for catalysis and energy applications.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"25 ","pages":"Article 100459"},"PeriodicalIF":8.2000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PET-derived bis(2-hydroxyethyl) terephthalate as a new linker source for solvent-free and hydrothermal synthesis of BDC-based MOFs\",\"authors\":\"Philip Anggo Krisbiantoro , Tzu-Jung Kuo , Yu-Chia Chang , Weisheng Liao , Jih-Peng Sun , Chun-Yen Yang , Yuichi Kamiya , Fa-Kuen Shieh , Chia-Chin Chen , Kevin C.-W Wu\",\"doi\":\"10.1016/j.mtnano.2024.100459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To date, the high cost of organic linkers and the energy-consuming synthesis processes remain two of the main challenges for the commercialization of metal-organic frameworks (MOFs). Herein, we demonstrate that polyethylene terephthalate (PET)-derived bis(2-hydroxyethyl) terephthalate (BHET) is a new linker source that enables the facile solvent-free and hydrothermal synthesis of BDC-based MOFs. Using BHET as a linker source, UiO-66(Zr) was rapidly synthesized via a solvent-free “grind and bake” technique, while Ca-BDC and Ba-BDC were easily obtained by using hydrothermal synthesis. We found that the hydrolysis of BHET to terephthalate anion (BDC<sup>2−</sup>) over proton produced from the hydrolysis/clustering of Zr precursor and hydroxyl anion produced from the dissolution of M(OH)<sub>2</sub> (M = Ca or Ba) was the key to the crystal growth of solvent-free synthesized UiO-66(Zr) and hydrothermally synthesized M-BDC (M = Ca or Ba), respectively. While the as-synthesized UiO-66(Zr) was highly active for the esterification of lactic acid (LA) with ethanol (EtOH), Ca-BDC and Ba-BDC exhibited remarkable electrochemical performance for lithium storage. Our strategy provides a major step towards realizing the idea of a more facile, green, and low-cost synthesis of PET-derived MOFs compared to prior arts applicable for catalysis and energy applications.</p></div>\",\"PeriodicalId\":48517,\"journal\":{\"name\":\"Materials Today Nano\",\"volume\":\"25 \",\"pages\":\"Article 100459\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588842024000099\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000099","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
PET-derived bis(2-hydroxyethyl) terephthalate as a new linker source for solvent-free and hydrothermal synthesis of BDC-based MOFs
To date, the high cost of organic linkers and the energy-consuming synthesis processes remain two of the main challenges for the commercialization of metal-organic frameworks (MOFs). Herein, we demonstrate that polyethylene terephthalate (PET)-derived bis(2-hydroxyethyl) terephthalate (BHET) is a new linker source that enables the facile solvent-free and hydrothermal synthesis of BDC-based MOFs. Using BHET as a linker source, UiO-66(Zr) was rapidly synthesized via a solvent-free “grind and bake” technique, while Ca-BDC and Ba-BDC were easily obtained by using hydrothermal synthesis. We found that the hydrolysis of BHET to terephthalate anion (BDC2−) over proton produced from the hydrolysis/clustering of Zr precursor and hydroxyl anion produced from the dissolution of M(OH)2 (M = Ca or Ba) was the key to the crystal growth of solvent-free synthesized UiO-66(Zr) and hydrothermally synthesized M-BDC (M = Ca or Ba), respectively. While the as-synthesized UiO-66(Zr) was highly active for the esterification of lactic acid (LA) with ethanol (EtOH), Ca-BDC and Ba-BDC exhibited remarkable electrochemical performance for lithium storage. Our strategy provides a major step towards realizing the idea of a more facile, green, and low-cost synthesis of PET-derived MOFs compared to prior arts applicable for catalysis and energy applications.
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites