关于标准和脑约束深度神经网络支持认知叠加的能力:立场文件

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Max Garagnani
{"title":"关于标准和脑约束深度神经网络支持认知叠加的能力:立场文件","authors":"Max Garagnani","doi":"10.1007/s11571-023-10061-1","DOIUrl":null,"url":null,"abstract":"<p>The ability to coactivate (or “superpose”) multiple conceptual representations is a fundamental function that we constantly rely upon; this is crucial in complex cognitive tasks requiring multi-item working memory, such as mental arithmetic, abstract reasoning, and language comprehension. As such, an artificial system aspiring to implement any of these aspects of general intelligence should be able to support this operation. I argue here that standard, feed-forward deep neural networks (DNNs) are unable to implement this function, whereas an alternative, fully brain-constrained class of neural architectures spontaneously exhibits it. On the basis of novel simulations, this proof-of-concept article shows that deep, brain-like networks trained with biologically realistic Hebbian learning mechanisms display the spontaneous emergence of internal circuits (cell assemblies) having features that make them natural candidates for supporting superposition. Building on previous computational modelling results, I also argue that, and offer an explanation as to why, in contrast, modern DNNs trained with gradient descent are generally unable to co-activate their internal representations. While deep brain-constrained neural architectures spontaneously develop the ability to support superposition as a result of (1) neurophysiologically accurate learning and (2) cortically realistic between-area connections, backpropagation-trained DNNs appear to be unsuited to implement this basic cognitive operation, arguably necessary for abstract thinking and general intelligence. The implications of this observation are briefly discussed in the larger context of existing and future artificial intelligence systems and neuro-realistic computational models.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"254 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the ability of standard and brain-constrained deep neural networks to support cognitive superposition: a position paper\",\"authors\":\"Max Garagnani\",\"doi\":\"10.1007/s11571-023-10061-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The ability to coactivate (or “superpose”) multiple conceptual representations is a fundamental function that we constantly rely upon; this is crucial in complex cognitive tasks requiring multi-item working memory, such as mental arithmetic, abstract reasoning, and language comprehension. As such, an artificial system aspiring to implement any of these aspects of general intelligence should be able to support this operation. I argue here that standard, feed-forward deep neural networks (DNNs) are unable to implement this function, whereas an alternative, fully brain-constrained class of neural architectures spontaneously exhibits it. On the basis of novel simulations, this proof-of-concept article shows that deep, brain-like networks trained with biologically realistic Hebbian learning mechanisms display the spontaneous emergence of internal circuits (cell assemblies) having features that make them natural candidates for supporting superposition. Building on previous computational modelling results, I also argue that, and offer an explanation as to why, in contrast, modern DNNs trained with gradient descent are generally unable to co-activate their internal representations. While deep brain-constrained neural architectures spontaneously develop the ability to support superposition as a result of (1) neurophysiologically accurate learning and (2) cortically realistic between-area connections, backpropagation-trained DNNs appear to be unsuited to implement this basic cognitive operation, arguably necessary for abstract thinking and general intelligence. The implications of this observation are briefly discussed in the larger context of existing and future artificial intelligence systems and neuro-realistic computational models.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"254 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-023-10061-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-10061-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

协同激活(或 "叠加")多个概念表征的能力是我们经常依赖的基本功能;这在需要多项目工作记忆的复杂认知任务中至关重要,例如心算、抽象推理和语言理解。因此,希望实现这些通用智能的人工系统应该能够支持这种操作。我在此指出,标准的前馈式深度神经网络(DNN)无法实现这一功能,而另一种完全受大脑约束的神经架构却能自发地实现这一功能。在新颖模拟的基础上,这篇概念验证文章表明,用生物现实海比学习机制训练的深度类脑网络显示出自发出现的内部电路(细胞集合),其特征使它们成为支持叠加的天然候选者。在先前计算建模结果的基础上,我还论证并解释了为什么现代梯度下降训练的 DNN 通常无法共同激活其内部表征。由于(1)神经生理学上的精确学习和(2)大脑皮层上现实的区域间连接,深脑约束神经架构自发地发展出支持叠加的能力,而反向传播训练的 DNN 似乎不适合实现这一基本认知操作,而这可以说是抽象思维和一般智能所必需的。本文将从现有和未来的人工智能系统以及神经现实计算模型的更广阔背景出发,简要讨论这一观察结果的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the ability of standard and brain-constrained deep neural networks to support cognitive superposition: a position paper

On the ability of standard and brain-constrained deep neural networks to support cognitive superposition: a position paper

The ability to coactivate (or “superpose”) multiple conceptual representations is a fundamental function that we constantly rely upon; this is crucial in complex cognitive tasks requiring multi-item working memory, such as mental arithmetic, abstract reasoning, and language comprehension. As such, an artificial system aspiring to implement any of these aspects of general intelligence should be able to support this operation. I argue here that standard, feed-forward deep neural networks (DNNs) are unable to implement this function, whereas an alternative, fully brain-constrained class of neural architectures spontaneously exhibits it. On the basis of novel simulations, this proof-of-concept article shows that deep, brain-like networks trained with biologically realistic Hebbian learning mechanisms display the spontaneous emergence of internal circuits (cell assemblies) having features that make them natural candidates for supporting superposition. Building on previous computational modelling results, I also argue that, and offer an explanation as to why, in contrast, modern DNNs trained with gradient descent are generally unable to co-activate their internal representations. While deep brain-constrained neural architectures spontaneously develop the ability to support superposition as a result of (1) neurophysiologically accurate learning and (2) cortically realistic between-area connections, backpropagation-trained DNNs appear to be unsuited to implement this basic cognitive operation, arguably necessary for abstract thinking and general intelligence. The implications of this observation are briefly discussed in the larger context of existing and future artificial intelligence systems and neuro-realistic computational models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信