基于认知负荷和 DPCNN 的电力系统 PageRank 人才挖掘算法

IF 1.5 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Kan Feng, Changliang Yang, Wenqiang Zhu, Kun Li, Ya Chen
{"title":"基于认知负荷和 DPCNN 的电力系统 PageRank 人才挖掘算法","authors":"Kan Feng,&nbsp;Changliang Yang,&nbsp;Wenqiang Zhu,&nbsp;Kun Li,&nbsp;Ya Chen","doi":"10.1049/cmu2.12721","DOIUrl":null,"url":null,"abstract":"<p>PageRank talent mining in power system is an effective means for enterprises to recruit talents, which can correctly recommend talents in practical applications. At present, the mining evaluation index system is not perfect, and the consistency coefficient between the evaluation results and the actual situation is low in practical applications. Therefore, PageRank talent mining algorithm in power system based on cognitive load and dilated convolutional neural network (DPCNN) is proposed. The cognitive load and DPCNN are used to establish a talent capability evaluation system, calculate the index weight value, construct the PageRank talent capability evaluation model of the power system according to the corresponding weight of the index, determine the membership range of the index, calculate the comprehensive score of the appraiser's ability, and determine the ability level of the appraiser, thus realizing the PageRank talent mining algorithm of the power system. The experimental results show that the algorithm has high accuracy and objectivity, good encryption effect, cannot crack the attack node, the prediction error and the prediction relative error are closest to the standard value, the maximum error is 0.51, the maximum relative error is 0.82, and can achieve the accurate prediction of talent demand.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 2","pages":"176-186"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12721","citationCount":"0","resultStr":"{\"title\":\"PageRank talent mining algorithm of power system based on cognitive load and DPCNN\",\"authors\":\"Kan Feng,&nbsp;Changliang Yang,&nbsp;Wenqiang Zhu,&nbsp;Kun Li,&nbsp;Ya Chen\",\"doi\":\"10.1049/cmu2.12721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>PageRank talent mining in power system is an effective means for enterprises to recruit talents, which can correctly recommend talents in practical applications. At present, the mining evaluation index system is not perfect, and the consistency coefficient between the evaluation results and the actual situation is low in practical applications. Therefore, PageRank talent mining algorithm in power system based on cognitive load and dilated convolutional neural network (DPCNN) is proposed. The cognitive load and DPCNN are used to establish a talent capability evaluation system, calculate the index weight value, construct the PageRank talent capability evaluation model of the power system according to the corresponding weight of the index, determine the membership range of the index, calculate the comprehensive score of the appraiser's ability, and determine the ability level of the appraiser, thus realizing the PageRank talent mining algorithm of the power system. The experimental results show that the algorithm has high accuracy and objectivity, good encryption effect, cannot crack the attack node, the prediction error and the prediction relative error are closest to the standard value, the maximum error is 0.51, the maximum relative error is 0.82, and can achieve the accurate prediction of talent demand.</p>\",\"PeriodicalId\":55001,\"journal\":{\"name\":\"IET Communications\",\"volume\":\"18 2\",\"pages\":\"176-186\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12721\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12721\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12721","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

电力系统 PageRank 人才挖掘是企业招聘人才的有效手段,在实际应用中能够正确推荐人才。目前,挖掘评价指标体系并不完善,在实际应用中评价结果与实际情况的一致性系数较低。因此,提出了基于认知负荷和扩张卷积神经网络(DPCNN)的电力系统 PageRank 人才挖掘算法。利用认知负荷和 DPCNN 建立人才能力评价体系,计算指标权重值,根据指标对应的权重构建电力系统 PageRank 人才能力评价模型,确定指标的成员范围,计算评价者的能力综合得分,确定评价者的能力水平,从而实现电力系统 PageRank 人才挖掘算法。实验结果表明,该算法准确性和客观性高,加密效果好,无法破解攻击节点,预测误差和预测相对误差最接近标准值,最大误差为0.51,最大相对误差为0.82,能够实现对人才需求的准确预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

PageRank talent mining algorithm of power system based on cognitive load and DPCNN

PageRank talent mining algorithm of power system based on cognitive load and DPCNN

PageRank talent mining in power system is an effective means for enterprises to recruit talents, which can correctly recommend talents in practical applications. At present, the mining evaluation index system is not perfect, and the consistency coefficient between the evaluation results and the actual situation is low in practical applications. Therefore, PageRank talent mining algorithm in power system based on cognitive load and dilated convolutional neural network (DPCNN) is proposed. The cognitive load and DPCNN are used to establish a talent capability evaluation system, calculate the index weight value, construct the PageRank talent capability evaluation model of the power system according to the corresponding weight of the index, determine the membership range of the index, calculate the comprehensive score of the appraiser's ability, and determine the ability level of the appraiser, thus realizing the PageRank talent mining algorithm of the power system. The experimental results show that the algorithm has high accuracy and objectivity, good encryption effect, cannot crack the attack node, the prediction error and the prediction relative error are closest to the standard value, the maximum error is 0.51, the maximum relative error is 0.82, and can achieve the accurate prediction of talent demand.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Communications
IET Communications 工程技术-工程:电子与电气
CiteScore
4.30
自引率
6.20%
发文量
220
审稿时长
5.9 months
期刊介绍: IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth. Topics include, but are not limited to: Coding and Communication Theory; Modulation and Signal Design; Wired, Wireless and Optical Communication; Communication System Special Issues. Current Call for Papers: Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信