Robert J. W. Brewin, Xuerong Sun, Dirk A. Aurin, Johannes J. Viljoen, Christopher Walsh, S. Sathyendranath
{"title":"超级游艇可支持卫星海洋颜色验证","authors":"Robert J. W. Brewin, Xuerong Sun, Dirk A. Aurin, Johannes J. Viljoen, Christopher Walsh, S. Sathyendranath","doi":"10.3389/frsen.2024.1336494","DOIUrl":null,"url":null,"abstract":"Visible spectral radiometry of seawater, often referred to as ocean colour, from space, provides a synoptic view of surface phytoplankton, and other optically-active constituents, at high temporal resolution, that is unsurpassed by any other technology. Yet, in-situ observations of ocean colour are critical to the success of the satellite, tracking the calibration of the radiometers and validating atmospheric correction algorithms. Owing to the high cost of commercial field radiometers, as well as the high costs associated with ocean-based field work, ocean colour scientists are plagued by a sparsity of high quality in-situ radiometric observations, particularly in remote regions. In this perspective article, we highlight potential to increase the number of in-situ observations of ocean colour by harnessing superyachts. Using openly-available data processing software, we show that automated ocean colour data collected using a superyacht can be used for the validation of an ocean colour satellite, with comparable results to traditional validation studies. Reaching out to wealthy citizen scientists may help fill gaps in our ability to monitor the colour of the ocean.","PeriodicalId":502669,"journal":{"name":"Frontiers in Remote Sensing","volume":"34 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superyachts could support satellite ocean colour validation\",\"authors\":\"Robert J. W. Brewin, Xuerong Sun, Dirk A. Aurin, Johannes J. Viljoen, Christopher Walsh, S. Sathyendranath\",\"doi\":\"10.3389/frsen.2024.1336494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visible spectral radiometry of seawater, often referred to as ocean colour, from space, provides a synoptic view of surface phytoplankton, and other optically-active constituents, at high temporal resolution, that is unsurpassed by any other technology. Yet, in-situ observations of ocean colour are critical to the success of the satellite, tracking the calibration of the radiometers and validating atmospheric correction algorithms. Owing to the high cost of commercial field radiometers, as well as the high costs associated with ocean-based field work, ocean colour scientists are plagued by a sparsity of high quality in-situ radiometric observations, particularly in remote regions. In this perspective article, we highlight potential to increase the number of in-situ observations of ocean colour by harnessing superyachts. Using openly-available data processing software, we show that automated ocean colour data collected using a superyacht can be used for the validation of an ocean colour satellite, with comparable results to traditional validation studies. Reaching out to wealthy citizen scientists may help fill gaps in our ability to monitor the colour of the ocean.\",\"PeriodicalId\":502669,\"journal\":{\"name\":\"Frontiers in Remote Sensing\",\"volume\":\"34 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frsen.2024.1336494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frsen.2024.1336494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Superyachts could support satellite ocean colour validation
Visible spectral radiometry of seawater, often referred to as ocean colour, from space, provides a synoptic view of surface phytoplankton, and other optically-active constituents, at high temporal resolution, that is unsurpassed by any other technology. Yet, in-situ observations of ocean colour are critical to the success of the satellite, tracking the calibration of the radiometers and validating atmospheric correction algorithms. Owing to the high cost of commercial field radiometers, as well as the high costs associated with ocean-based field work, ocean colour scientists are plagued by a sparsity of high quality in-situ radiometric observations, particularly in remote regions. In this perspective article, we highlight potential to increase the number of in-situ observations of ocean colour by harnessing superyachts. Using openly-available data processing software, we show that automated ocean colour data collected using a superyacht can be used for the validation of an ocean colour satellite, with comparable results to traditional validation studies. Reaching out to wealthy citizen scientists may help fill gaps in our ability to monitor the colour of the ocean.