Lu-Yang Ji, Xiaoyue Hong, Rui Yang, Qingyue Liu, Wenhan Zhang
{"title":"基于液态金属超表面的低雷达截面天线阵列","authors":"Lu-Yang Ji, Xiaoyue Hong, Rui Yang, Qingyue Liu, Wenhan Zhang","doi":"10.1049/mia2.12452","DOIUrl":null,"url":null,"abstract":"<p>A low RCS (radar cross section) slot array antenna based on a liquid metal metasurface is proposed. The metasurface consists of 6 × 6 nested ring-shaped element. The inner ring with a checkerboard distribution can realise 180° ± 37° phase difference, which can effectively reduce the scattering performances for the slot array. The outer and inner ring together can excite more energy from the slot array, thus resulting in increased radiation gains. Therefore, by changing the layout of liquid metal on the metasurface, scattering and radiation enhancement modes can be switched. The measured results show that in the scattering mode, the RCS can be reduced from 8.1 to 17 GHz. While in the radiation enhancement mode, the proposed array with the metasurface can achieve a −10-dB impedance bandwidth of 9.4–11.2 GHz (17.4%) with a maximum gain of 8.12 dBi. Compared with the slot array without the metasurface, the realised gain is enhanced by 1.2 dBi from 6.9 dBi. The measured results correspond well with the simulated ones.</p>","PeriodicalId":13374,"journal":{"name":"Iet Microwaves Antennas & Propagation","volume":"18 3","pages":"173-180"},"PeriodicalIF":1.1000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.12452","citationCount":"0","resultStr":"{\"title\":\"A low radar cross section antenna array based on a liquid metal metasurface\",\"authors\":\"Lu-Yang Ji, Xiaoyue Hong, Rui Yang, Qingyue Liu, Wenhan Zhang\",\"doi\":\"10.1049/mia2.12452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A low RCS (radar cross section) slot array antenna based on a liquid metal metasurface is proposed. The metasurface consists of 6 × 6 nested ring-shaped element. The inner ring with a checkerboard distribution can realise 180° ± 37° phase difference, which can effectively reduce the scattering performances for the slot array. The outer and inner ring together can excite more energy from the slot array, thus resulting in increased radiation gains. Therefore, by changing the layout of liquid metal on the metasurface, scattering and radiation enhancement modes can be switched. The measured results show that in the scattering mode, the RCS can be reduced from 8.1 to 17 GHz. While in the radiation enhancement mode, the proposed array with the metasurface can achieve a −10-dB impedance bandwidth of 9.4–11.2 GHz (17.4%) with a maximum gain of 8.12 dBi. Compared with the slot array without the metasurface, the realised gain is enhanced by 1.2 dBi from 6.9 dBi. The measured results correspond well with the simulated ones.</p>\",\"PeriodicalId\":13374,\"journal\":{\"name\":\"Iet Microwaves Antennas & Propagation\",\"volume\":\"18 3\",\"pages\":\"173-180\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.12452\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Microwaves Antennas & Propagation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/mia2.12452\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Microwaves Antennas & Propagation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mia2.12452","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A low radar cross section antenna array based on a liquid metal metasurface
A low RCS (radar cross section) slot array antenna based on a liquid metal metasurface is proposed. The metasurface consists of 6 × 6 nested ring-shaped element. The inner ring with a checkerboard distribution can realise 180° ± 37° phase difference, which can effectively reduce the scattering performances for the slot array. The outer and inner ring together can excite more energy from the slot array, thus resulting in increased radiation gains. Therefore, by changing the layout of liquid metal on the metasurface, scattering and radiation enhancement modes can be switched. The measured results show that in the scattering mode, the RCS can be reduced from 8.1 to 17 GHz. While in the radiation enhancement mode, the proposed array with the metasurface can achieve a −10-dB impedance bandwidth of 9.4–11.2 GHz (17.4%) with a maximum gain of 8.12 dBi. Compared with the slot array without the metasurface, the realised gain is enhanced by 1.2 dBi from 6.9 dBi. The measured results correspond well with the simulated ones.
期刊介绍:
Topics include, but are not limited to:
Microwave circuits including RF, microwave and millimetre-wave amplifiers, oscillators, switches, mixers and other components implemented in monolithic, hybrid, multi-chip module and other technologies. Papers on passive components may describe transmission-line and waveguide components, including filters, multiplexers, resonators, ferrite and garnet devices. For applications, papers can describe microwave sub-systems for use in communications, radar, aerospace, instrumentation, industrial and medical applications. Microwave linear and non-linear measurement techniques.
Antenna topics including designed and prototyped antennas for operation at all frequencies; multiband antennas, antenna measurement techniques and systems, antenna analysis and design, aperture antenna arrays, adaptive antennas, printed and wire antennas, microstrip, reconfigurable, conformal and integrated antennas.
Computational electromagnetics and synthesis of antenna structures including phased arrays and antenna design algorithms.
Radiowave propagation at all frequencies and environments.
Current Special Issue. Call for papers:
Metrology for 5G Technologies - https://digital-library.theiet.org/files/IET_MAP_CFP_M5GT_SI2.pdf