{"title":"[神经胶质纤维酸性蛋白(GFAP)抗体相关疾病的临床特征和发病机制]。","authors":"Akio Kimura","doi":"10.5692/clinicalneurol.cn-001925","DOIUrl":null,"url":null,"abstract":"<p><p>Glial fibrillary acidic protein (GFAP) antibody-associated disorders (AD) were recently proposed to be immune-mediated neurological disorders. The pathogenesis of GFAP antibody-AD is poorly understood. Pathologically, there is a marked infiltration of large numbers of lymphocytes, including CD8+ and CD4+ T cells, into the meningeal and brain parenchyma, especially around the perivascular areas. GFAP-specific cytotoxic T cells are considered to be the effector cells of GFAP antibody-AD. The common phenotype of GFAP antibody-AD includes meningoencephalitis with or without myelitis. During the clinical disease course, patients present with consciousness disturbances, urinary dysfunction, movement disorders, meningeal irritation, and cognitive dysfunction. The detection of GFAP antibodies in the cerebrospinal fluid (CSF) by cell-based assay is essential for a diagnosis of GFAP antibody-AD. The CSF can be examined for lymphocyte-predominant pleocytosis and elevated protein levels. Brain linear perivascular radial enhancement patterns are observed in about half of GFAP antibody-AD patients. Spinal cord magnetic resonance imaging is used to detect longitudinal extensive spinal cord lesions. Although corticosteroid therapy is generally effective, some patients have a poor prognosis and relapse.</p>","PeriodicalId":39292,"journal":{"name":"Clinical Neurology","volume":" ","pages":"75-84"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Clinical features and pathogenesis of Glial fibrillary acidic protein (GFAP) antibody-associated disorders].\",\"authors\":\"Akio Kimura\",\"doi\":\"10.5692/clinicalneurol.cn-001925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glial fibrillary acidic protein (GFAP) antibody-associated disorders (AD) were recently proposed to be immune-mediated neurological disorders. The pathogenesis of GFAP antibody-AD is poorly understood. Pathologically, there is a marked infiltration of large numbers of lymphocytes, including CD8+ and CD4+ T cells, into the meningeal and brain parenchyma, especially around the perivascular areas. GFAP-specific cytotoxic T cells are considered to be the effector cells of GFAP antibody-AD. The common phenotype of GFAP antibody-AD includes meningoencephalitis with or without myelitis. During the clinical disease course, patients present with consciousness disturbances, urinary dysfunction, movement disorders, meningeal irritation, and cognitive dysfunction. The detection of GFAP antibodies in the cerebrospinal fluid (CSF) by cell-based assay is essential for a diagnosis of GFAP antibody-AD. The CSF can be examined for lymphocyte-predominant pleocytosis and elevated protein levels. Brain linear perivascular radial enhancement patterns are observed in about half of GFAP antibody-AD patients. Spinal cord magnetic resonance imaging is used to detect longitudinal extensive spinal cord lesions. Although corticosteroid therapy is generally effective, some patients have a poor prognosis and relapse.</p>\",\"PeriodicalId\":39292,\"journal\":{\"name\":\"Clinical Neurology\",\"volume\":\" \",\"pages\":\"75-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Neurology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5692/clinicalneurol.cn-001925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5692/clinicalneurol.cn-001925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
[Clinical features and pathogenesis of Glial fibrillary acidic protein (GFAP) antibody-associated disorders].
Glial fibrillary acidic protein (GFAP) antibody-associated disorders (AD) were recently proposed to be immune-mediated neurological disorders. The pathogenesis of GFAP antibody-AD is poorly understood. Pathologically, there is a marked infiltration of large numbers of lymphocytes, including CD8+ and CD4+ T cells, into the meningeal and brain parenchyma, especially around the perivascular areas. GFAP-specific cytotoxic T cells are considered to be the effector cells of GFAP antibody-AD. The common phenotype of GFAP antibody-AD includes meningoencephalitis with or without myelitis. During the clinical disease course, patients present with consciousness disturbances, urinary dysfunction, movement disorders, meningeal irritation, and cognitive dysfunction. The detection of GFAP antibodies in the cerebrospinal fluid (CSF) by cell-based assay is essential for a diagnosis of GFAP antibody-AD. The CSF can be examined for lymphocyte-predominant pleocytosis and elevated protein levels. Brain linear perivascular radial enhancement patterns are observed in about half of GFAP antibody-AD patients. Spinal cord magnetic resonance imaging is used to detect longitudinal extensive spinal cord lesions. Although corticosteroid therapy is generally effective, some patients have a poor prognosis and relapse.