研究强度和频率对振动触觉空间敏锐度的影响

IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS
Bingjian Huang;Paul H. Dietz;Daniel Wigdor
{"title":"研究强度和频率对振动触觉空间敏锐度的影响","authors":"Bingjian Huang;Paul H. Dietz;Daniel Wigdor","doi":"10.1109/TOH.2024.3350929","DOIUrl":null,"url":null,"abstract":"Vibrotactile devices are commonly used in applications for sensory substitution or to provide feedback in virtual reality. An important aspect of vibrotactile perception is spatial acuity, which determines the resolutions of vibrotactile displays on the skin. However, the complex vibration characteristics of vibrotactile actuators make it challenging for researchers to reference and compare previous study results. This is because the effects of typical characteristics, such as intensity and frequency, are not well understood. In this study, we investigated the effects of intensity and frequency on vibrotactile spatial acuity. Using Linear Resonant Actuators (LRAs), we conducted relative point localization experiments to measure spatial acuity under different conditions. In the first experiment, we found that intensity had a significant effect on spatial acuity, with higher intensity leading to better acuity. In the second experiment, using a carefully designed intensity calibration procedure, we did not find a significant effect of frequency on spatial acuity. These findings provide a better understanding of vibrotactile spatial acuity, allow for comparisons to previous research, and provide insights into the design of future tactile devices.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"17 3","pages":"405-416"},"PeriodicalIF":2.4000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the Effects of Intensity and Frequency on Vibrotactile Spatial Acuity\",\"authors\":\"Bingjian Huang;Paul H. Dietz;Daniel Wigdor\",\"doi\":\"10.1109/TOH.2024.3350929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vibrotactile devices are commonly used in applications for sensory substitution or to provide feedback in virtual reality. An important aspect of vibrotactile perception is spatial acuity, which determines the resolutions of vibrotactile displays on the skin. However, the complex vibration characteristics of vibrotactile actuators make it challenging for researchers to reference and compare previous study results. This is because the effects of typical characteristics, such as intensity and frequency, are not well understood. In this study, we investigated the effects of intensity and frequency on vibrotactile spatial acuity. Using Linear Resonant Actuators (LRAs), we conducted relative point localization experiments to measure spatial acuity under different conditions. In the first experiment, we found that intensity had a significant effect on spatial acuity, with higher intensity leading to better acuity. In the second experiment, using a carefully designed intensity calibration procedure, we did not find a significant effect of frequency on spatial acuity. These findings provide a better understanding of vibrotactile spatial acuity, allow for comparisons to previous research, and provide insights into the design of future tactile devices.\",\"PeriodicalId\":13215,\"journal\":{\"name\":\"IEEE Transactions on Haptics\",\"volume\":\"17 3\",\"pages\":\"405-416\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Haptics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10384555/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10384555/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

振动触觉设备通常用于感官替代或在虚拟现实中提供反馈。振动触觉感知的一个重要方面是空间敏锐度,它决定了皮肤上振动触觉显示器的分辨率。然而,振动触觉致动器复杂的振动特性使得研究人员在参考和比较以前的研究结果时面临挑战。这是因为对典型特性(如强度和频率)的影响还不甚了解。在本研究中,我们研究了强度和频率对振动触觉空间敏锐度的影响。我们使用线性谐振致动器(LRA)进行了相对点定位实验,以测量不同条件下的空间敏锐度。在第一个实验中,我们发现强度对空间敏锐度有显著影响,强度越高,敏锐度越高。在第二个实验中,我们使用了精心设计的强度校准程序,结果发现频率对空间敏锐度没有显著影响。这些发现让我们对振动触觉的空间敏锐度有了更好的了解,可以与之前的研究进行比较,并为未来触觉设备的设计提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the Effects of Intensity and Frequency on Vibrotactile Spatial Acuity
Vibrotactile devices are commonly used in applications for sensory substitution or to provide feedback in virtual reality. An important aspect of vibrotactile perception is spatial acuity, which determines the resolutions of vibrotactile displays on the skin. However, the complex vibration characteristics of vibrotactile actuators make it challenging for researchers to reference and compare previous study results. This is because the effects of typical characteristics, such as intensity and frequency, are not well understood. In this study, we investigated the effects of intensity and frequency on vibrotactile spatial acuity. Using Linear Resonant Actuators (LRAs), we conducted relative point localization experiments to measure spatial acuity under different conditions. In the first experiment, we found that intensity had a significant effect on spatial acuity, with higher intensity leading to better acuity. In the second experiment, using a carefully designed intensity calibration procedure, we did not find a significant effect of frequency on spatial acuity. These findings provide a better understanding of vibrotactile spatial acuity, allow for comparisons to previous research, and provide insights into the design of future tactile devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Haptics
IEEE Transactions on Haptics COMPUTER SCIENCE, CYBERNETICS-
CiteScore
5.90
自引率
13.80%
发文量
109
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信