{"title":"基于概率密度聚类的离群点检测算法","authors":"Wei Wang, Yongjian Ren, Renjie Zhou, Jilin Zhang","doi":"10.4018/ijdwm.333901","DOIUrl":null,"url":null,"abstract":"Outlier detection for batch and streaming data is an important branch of data mining. However, there are shortcomings for existing algorithms. For batch data, the outlier detection algorithm, only labeling a few data points, is not accurate enough because it uses histogram strategy to generate feature vectors. For streaming data, the outlier detection algorithms are sensitive to data distance, resulting in low accuracy when sparse clusters and dense clusters are close to each other. Moreover, they require tuning of parameters, which takes a lot of time. With this, the manuscript per the authors propose a new outlier detection algorithm, called PDC which use probability density to generate feature vectors to train a lightweight machine learning model that is finally applied to detect outliers. PDC takes advantages of accuracy and insensitivity-to-data-distance of probability density, so it can overcome the aforementioned drawbacks.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":"31 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Outlier Detection Algorithm Based on Probability Density Clustering\",\"authors\":\"Wei Wang, Yongjian Ren, Renjie Zhou, Jilin Zhang\",\"doi\":\"10.4018/ijdwm.333901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outlier detection for batch and streaming data is an important branch of data mining. However, there are shortcomings for existing algorithms. For batch data, the outlier detection algorithm, only labeling a few data points, is not accurate enough because it uses histogram strategy to generate feature vectors. For streaming data, the outlier detection algorithms are sensitive to data distance, resulting in low accuracy when sparse clusters and dense clusters are close to each other. Moreover, they require tuning of parameters, which takes a lot of time. With this, the manuscript per the authors propose a new outlier detection algorithm, called PDC which use probability density to generate feature vectors to train a lightweight machine learning model that is finally applied to detect outliers. PDC takes advantages of accuracy and insensitivity-to-data-distance of probability density, so it can overcome the aforementioned drawbacks.\",\"PeriodicalId\":54963,\"journal\":{\"name\":\"International Journal of Data Warehousing and Mining\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Warehousing and Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdwm.333901\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.333901","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
An Outlier Detection Algorithm Based on Probability Density Clustering
Outlier detection for batch and streaming data is an important branch of data mining. However, there are shortcomings for existing algorithms. For batch data, the outlier detection algorithm, only labeling a few data points, is not accurate enough because it uses histogram strategy to generate feature vectors. For streaming data, the outlier detection algorithms are sensitive to data distance, resulting in low accuracy when sparse clusters and dense clusters are close to each other. Moreover, they require tuning of parameters, which takes a lot of time. With this, the manuscript per the authors propose a new outlier detection algorithm, called PDC which use probability density to generate feature vectors to train a lightweight machine learning model that is finally applied to detect outliers. PDC takes advantages of accuracy and insensitivity-to-data-distance of probability density, so it can overcome the aforementioned drawbacks.
期刊介绍:
The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving