基于寡糖的聚合物对实验性感染致病性大肠杆菌的断奶猪的代谢概况和微生物生态的影响

IF 7 1区 农林科学 Q1 Agricultural and Biological Sciences
Kwangwook Kim, Cynthia Jinno, Xunde Li, David Bravo, Eric Cox, Peng Ji, Yanhong Liu
{"title":"基于寡糖的聚合物对实验性感染致病性大肠杆菌的断奶猪的代谢概况和微生物生态的影响","authors":"Kwangwook Kim, Cynthia Jinno, Xunde Li, David Bravo, Eric Cox, Peng Ji, Yanhong Liu","doi":"10.1186/s40104-023-00956-8","DOIUrl":null,"url":null,"abstract":"Our previous study has reported that supplementation of oligosaccharide-based polymer enhances gut health and disease resistance of pigs infected with enterotoxigenic E. coli (ETEC) F18 in a manner similar to carbadox. The objective of this study was to investigate the impacts of oligosaccharide-based polymer or antibiotic on the host metabolic profiles and colon microbiota of weaned pigs experimentally infected with ETEC F18. Multivariate analysis highlighted the differences in the metabolic profiles of serum and colon digesta which were predominantly found between pigs supplemented with oligosaccharide-based polymer and antibiotic. The relative abundance of metabolic markers of immune responses and nutrient metabolisms, such as amino acids and carbohydrates, were significantly differentiated between the oligosaccharide-based polymer and antibiotic groups (q < 0.2 and fold change > 2.0). In addition, pigs in antibiotic had a reduced (P < 0.05) relative abundance of Lachnospiraceae and Lactobacillaceae, whereas had greater (P < 0.05) Clostridiaceae and Streptococcaceae in the colon digesta on d 11 post-inoculation (PI) compared with d 5 PI. The impact of oligosaccharide-based polymer on the metabolic and microbial profiles of pigs is not fully understood, and further exploration is needed. However, current research suggest that various mechanisms are involved in the enhanced disease resistance and performance in ETEC-challenged pigs by supplementing this polymer.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"35 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of an oligosaccharide-based polymer on the metabolic profiles and microbial ecology of weanling pigs experimentally infected with a pathogenic E. coli\",\"authors\":\"Kwangwook Kim, Cynthia Jinno, Xunde Li, David Bravo, Eric Cox, Peng Ji, Yanhong Liu\",\"doi\":\"10.1186/s40104-023-00956-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our previous study has reported that supplementation of oligosaccharide-based polymer enhances gut health and disease resistance of pigs infected with enterotoxigenic E. coli (ETEC) F18 in a manner similar to carbadox. The objective of this study was to investigate the impacts of oligosaccharide-based polymer or antibiotic on the host metabolic profiles and colon microbiota of weaned pigs experimentally infected with ETEC F18. Multivariate analysis highlighted the differences in the metabolic profiles of serum and colon digesta which were predominantly found between pigs supplemented with oligosaccharide-based polymer and antibiotic. The relative abundance of metabolic markers of immune responses and nutrient metabolisms, such as amino acids and carbohydrates, were significantly differentiated between the oligosaccharide-based polymer and antibiotic groups (q < 0.2 and fold change > 2.0). In addition, pigs in antibiotic had a reduced (P < 0.05) relative abundance of Lachnospiraceae and Lactobacillaceae, whereas had greater (P < 0.05) Clostridiaceae and Streptococcaceae in the colon digesta on d 11 post-inoculation (PI) compared with d 5 PI. The impact of oligosaccharide-based polymer on the metabolic and microbial profiles of pigs is not fully understood, and further exploration is needed. However, current research suggest that various mechanisms are involved in the enhanced disease resistance and performance in ETEC-challenged pigs by supplementing this polymer.\",\"PeriodicalId\":14928,\"journal\":{\"name\":\"Journal of Animal Science and Biotechnology\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Animal Science and Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s40104-023-00956-8\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s40104-023-00956-8","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

我们之前的研究表明,补充低聚木糖聚合物可增强感染肠毒性大肠杆菌(ETEC)F18 的猪的肠道健康和抗病能力,其效果类似于卡巴多。本研究旨在探讨低聚木糖聚合物或抗生素对实验性感染 ETEC F18 的断奶猪的宿主代谢谱和结肠微生物群的影响。多变量分析显示,补充低聚糖聚合物和抗生素的猪血清和结肠消化液的代谢谱主要存在差异。免疫反应和营养代谢(如氨基酸和碳水化合物)指标的相对丰度在低聚木糖聚合物组和抗生素组之间存在显著差异(q 2.0)。此外,与接种后第 5 天相比,接种抗生素组的猪在接种后第 11 天的结肠消化液中乳球菌科(Lachnospiraceae)和乳酸菌科(Lactobacillaceae)的相对丰度降低(P < 0.05),而梭菌科(Clostridiaceae)和链球菌科(Streptococcaceae)的相对丰度增加(P < 0.05)。寡糖聚合物对猪代谢和微生物谱的影响尚未完全清楚,还需要进一步探索。不过,目前的研究表明,通过补充这种聚合物,ETEC 攻击猪的抗病能力和生产性能得到了提高,其中涉及多种机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of an oligosaccharide-based polymer on the metabolic profiles and microbial ecology of weanling pigs experimentally infected with a pathogenic E. coli
Our previous study has reported that supplementation of oligosaccharide-based polymer enhances gut health and disease resistance of pigs infected with enterotoxigenic E. coli (ETEC) F18 in a manner similar to carbadox. The objective of this study was to investigate the impacts of oligosaccharide-based polymer or antibiotic on the host metabolic profiles and colon microbiota of weaned pigs experimentally infected with ETEC F18. Multivariate analysis highlighted the differences in the metabolic profiles of serum and colon digesta which were predominantly found between pigs supplemented with oligosaccharide-based polymer and antibiotic. The relative abundance of metabolic markers of immune responses and nutrient metabolisms, such as amino acids and carbohydrates, were significantly differentiated between the oligosaccharide-based polymer and antibiotic groups (q < 0.2 and fold change > 2.0). In addition, pigs in antibiotic had a reduced (P < 0.05) relative abundance of Lachnospiraceae and Lactobacillaceae, whereas had greater (P < 0.05) Clostridiaceae and Streptococcaceae in the colon digesta on d 11 post-inoculation (PI) compared with d 5 PI. The impact of oligosaccharide-based polymer on the metabolic and microbial profiles of pigs is not fully understood, and further exploration is needed. However, current research suggest that various mechanisms are involved in the enhanced disease resistance and performance in ETEC-challenged pigs by supplementing this polymer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Animal Science and Biotechnology
Journal of Animal Science and Biotechnology AGRICULTURE, DAIRY & ANIMAL SCIENCE-
CiteScore
9.90
自引率
2.90%
发文量
822
审稿时长
17 weeks
期刊介绍: Journal of Animal Science and Biotechnology is an open access, peer-reviewed journal that encompasses all aspects of animal science and biotechnology. That includes domestic animal production, animal genetics and breeding, animal reproduction and physiology, animal nutrition and biochemistry, feed processing technology and bioevaluation, animal biotechnology, and meat science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信