Taylor Priest, Silvia Vidal-Melgosa, Jan-Hendrik Hehemann, Rudolf Amann, Bernhard M. Fuchs
{"title":"北极大西洋水域碳水化合物和碳水化合物降解基因的丰度与转录","authors":"Taylor Priest, Silvia Vidal-Melgosa, Jan-Hendrik Hehemann, Rudolf Amann, Bernhard M. Fuchs","doi":"10.1038/s43705-023-00324-7","DOIUrl":null,"url":null,"abstract":"Carbohydrates are chemically and structurally diverse, represent a substantial fraction of marine organic matter and are key substrates for heterotrophic microbes. Studies on carbohydrate utilisation by marine microbes have been centred on phytoplankton blooms in temperate regions, while far less is known from high-latitude waters and during later seasonal stages. Here, we combine glycan microarrays and analytical chromatography with metagenomics and metatranscriptomics to show the spatial heterogeneity in glycan distribution and potential carbohydrate utilisation by microbes in Atlantic waters of the Arctic. The composition and abundance of monomers and glycan structures in POM varied with location and depth. Complex fucose-containing sulfated polysaccharides, known to accumulate in the ocean, were consistently detected, while the more labile β-1,3-glucan exhibited a patchy distribution. Through ‘omics analysis, we identify variations in the abundance and transcription of carbohydrate degradation-related genes across samples at the community and population level. The populations contributing the most to transcription were taxonomically related to those known as primary responders and key carbohydrate degraders in temperate ecosystems, such as NS4 Marine Group and Formosa. The unique transcription profiles for these populations suggest distinct substrate utilisation potentials, with predicted glycan targets corresponding to those structurally identified in POM from the same sampling sites. By combining cutting-edge technologies and protocols, we provide insights into the carbohydrate component of the carbon cycle in the Arctic during late summer and present a high-quality dataset that will be of great value for future comparative analyses.","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":" ","pages":"1-13"},"PeriodicalIF":5.1000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43705-023-00324-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Carbohydrates and carbohydrate degradation gene abundance and transcription in Atlantic waters of the Arctic\",\"authors\":\"Taylor Priest, Silvia Vidal-Melgosa, Jan-Hendrik Hehemann, Rudolf Amann, Bernhard M. Fuchs\",\"doi\":\"10.1038/s43705-023-00324-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbohydrates are chemically and structurally diverse, represent a substantial fraction of marine organic matter and are key substrates for heterotrophic microbes. Studies on carbohydrate utilisation by marine microbes have been centred on phytoplankton blooms in temperate regions, while far less is known from high-latitude waters and during later seasonal stages. Here, we combine glycan microarrays and analytical chromatography with metagenomics and metatranscriptomics to show the spatial heterogeneity in glycan distribution and potential carbohydrate utilisation by microbes in Atlantic waters of the Arctic. The composition and abundance of monomers and glycan structures in POM varied with location and depth. Complex fucose-containing sulfated polysaccharides, known to accumulate in the ocean, were consistently detected, while the more labile β-1,3-glucan exhibited a patchy distribution. Through ‘omics analysis, we identify variations in the abundance and transcription of carbohydrate degradation-related genes across samples at the community and population level. The populations contributing the most to transcription were taxonomically related to those known as primary responders and key carbohydrate degraders in temperate ecosystems, such as NS4 Marine Group and Formosa. The unique transcription profiles for these populations suggest distinct substrate utilisation potentials, with predicted glycan targets corresponding to those structurally identified in POM from the same sampling sites. By combining cutting-edge technologies and protocols, we provide insights into the carbohydrate component of the carbon cycle in the Arctic during late summer and present a high-quality dataset that will be of great value for future comparative analyses.\",\"PeriodicalId\":73516,\"journal\":{\"name\":\"ISME communications\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43705-023-00324-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43705-023-00324-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43705-023-00324-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Carbohydrates and carbohydrate degradation gene abundance and transcription in Atlantic waters of the Arctic
Carbohydrates are chemically and structurally diverse, represent a substantial fraction of marine organic matter and are key substrates for heterotrophic microbes. Studies on carbohydrate utilisation by marine microbes have been centred on phytoplankton blooms in temperate regions, while far less is known from high-latitude waters and during later seasonal stages. Here, we combine glycan microarrays and analytical chromatography with metagenomics and metatranscriptomics to show the spatial heterogeneity in glycan distribution and potential carbohydrate utilisation by microbes in Atlantic waters of the Arctic. The composition and abundance of monomers and glycan structures in POM varied with location and depth. Complex fucose-containing sulfated polysaccharides, known to accumulate in the ocean, were consistently detected, while the more labile β-1,3-glucan exhibited a patchy distribution. Through ‘omics analysis, we identify variations in the abundance and transcription of carbohydrate degradation-related genes across samples at the community and population level. The populations contributing the most to transcription were taxonomically related to those known as primary responders and key carbohydrate degraders in temperate ecosystems, such as NS4 Marine Group and Formosa. The unique transcription profiles for these populations suggest distinct substrate utilisation potentials, with predicted glycan targets corresponding to those structurally identified in POM from the same sampling sites. By combining cutting-edge technologies and protocols, we provide insights into the carbohydrate component of the carbon cycle in the Arctic during late summer and present a high-quality dataset that will be of great value for future comparative analyses.