一般面积最小化超曲面的闵可夫斯基含量估计

Xuanyu Li
{"title":"一般面积最小化超曲面的闵可夫斯基含量估计","authors":"Xuanyu Li","doi":"arxiv-2312.02950","DOIUrl":null,"url":null,"abstract":"Let $\\Gamma$ be a smooth, closed, oriented, $(n-1)$-dimensional submanifold\nof $\\mathbb{R}^{n+1}$. It was shown by Chodosh-Mantoulidis-Schulze that one can\nperturb $\\Gamma$ to a nearby $\\Gamma'$ such that all minimizing currents with\nboundary $\\Gamma'$ are smooth away from a set with Hausdorff dimension less\nthan $n-9$. We prove that the perturbation can be made such that the singular\nset of the minimizing current with boundary $\\Gamma'$ has Minkowski dimension\nless than $n-9$.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minkowski content estimates for generic area minimizing hypersurfaces\",\"authors\":\"Xuanyu Li\",\"doi\":\"arxiv-2312.02950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\Gamma$ be a smooth, closed, oriented, $(n-1)$-dimensional submanifold\\nof $\\\\mathbb{R}^{n+1}$. It was shown by Chodosh-Mantoulidis-Schulze that one can\\nperturb $\\\\Gamma$ to a nearby $\\\\Gamma'$ such that all minimizing currents with\\nboundary $\\\\Gamma'$ are smooth away from a set with Hausdorff dimension less\\nthan $n-9$. We prove that the perturbation can be made such that the singular\\nset of the minimizing current with boundary $\\\\Gamma'$ has Minkowski dimension\\nless than $n-9$.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2312.02950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2312.02950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$\Gamma$是$\mathbb{R}^{n+1}$的光滑、封闭、定向、$(n-1)$维子流形。chodosh - mantoulidiss - schulze证明,一个人可以将$\Gamma$扰动到$\Gamma'$附近,使得所有以$\Gamma'$为边界的最小电流都平滑地远离一个Hausdorff维数小于$n-9$的集合。我们证明了可以使以$\Gamma $为边界的最小电流的奇异集具有小于$n-9$的闵可夫斯基维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minkowski content estimates for generic area minimizing hypersurfaces
Let $\Gamma$ be a smooth, closed, oriented, $(n-1)$-dimensional submanifold of $\mathbb{R}^{n+1}$. It was shown by Chodosh-Mantoulidis-Schulze that one can perturb $\Gamma$ to a nearby $\Gamma'$ such that all minimizing currents with boundary $\Gamma'$ are smooth away from a set with Hausdorff dimension less than $n-9$. We prove that the perturbation can be made such that the singular set of the minimizing current with boundary $\Gamma'$ has Minkowski dimension less than $n-9$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信